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Abstract

We consider the problem of computing upper and lower bounds on the price of

a European basket call option, given prices on other similar baskets. Although this

problem is very hard to solve exactly in the general case, we show that in some instances

the upper and lower bounds can be computed via simple closed-form expressions, or

linear programs. We also introduce an efficient linear programming relaxation of the

general problem based on an integral transform interpretation of the call price function.

We show that this relaxation is tight in some of the special cases examined before.
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Notation

For two n-vectors x, y, x ≥ y (resp. x < y) means xi ≥ yi (resp. xi < yi), i = 1, . . . , n;
x+ denotes the positive part of x, which is the vector with components max(xi, 0). e is the
n-vector with all components equal to one, and ei is the i-th unit vector of Rn. The set Rn

+

denotes the set of n-vectors with non-negative components, and Rn
++ its interior. The cone

of nonnegative measures with support included in Rn
+ is denoted by K. For w ∈ Rs, K ∈ R

and g ∈ Rs+1, the notation 〈g, (w,K)〉 denotes the scalar product g̃Tw + gm+1K, where g̃
contains the first s elements of g.

1 Introduction

1.1 Problem setup

Let p ∈ Rm
+ , K ∈ Rm

+ , w ∈ Rn, wi ∈ Rn, i = 1, . . . , m and K0 ≥ 0. We consider the problem
of computing upper and lower bounds on the price of an European basket call option with
strike K0 and weight vector w0:

Eπ(wT
0 x−K0)+, (1)

with respect to all probability distributions π ∈ K on the asset price vector x, consistent
with a given set of observed prices pi of options on other baskets, that is, given

Eπ(w
T
i x−Ki)+ = pi, i = 1, . . . , m. (2)

Note that we implicitly assume that all the options have the same maturity, and that, without
loss of generality, the risk-free interest rate is zero (we compare prices in the forward market).

We seek non-parametric bounds, that is, we do not assume any specific model for the
underlying asset prices; our sole assumption is the absence of a static arbitrage today (i.e.
the absence of an arbitrage that only requires trading today and at maturity). The primary
objective of these bounds is not to detect and exploit arbitrage opportunities in the basket
vs. vanilla market near the money, the amplitude of the Bid-Ask spreads being likely to
make those opportunities very rare. However, the data on basket prices (index options in
equity markets or swaptions in fixed income) is usually very sparse and traders often rely on
intuitive guesses to extrapolate the remaining points. Our results provide a simple method
to check the validity of these extrapolated prices where they are the most likely to create
static arbitrage opportunities, i.e. very far in or out of the money.

From a financial point of view, our approach can be seen as a one-period, non-parametric
computation of the upper and lower hedging prices defined in El Karoui and Quenez ([6] and
[7], see also [11]). The necessary conditions we detail in section 2.3 in a multidimensional
setup have been extensively used in the unidimensional case to infer information on the
state-price density given option prices (see [4] or [12] among others).

From an optimization point of view, problems such as the one above have received a
significant amount of attention in various forms. First, we can think of (2) as a linear
semi-infinite program, i.e. a linear program with a finite number of linear constraints on an
infinite dimensional variable. We use this interpretation and the related duality results to
compute closed-form solutions, for a particular subclass of problems. Secondly, we can see
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(2) as generalized moment constraints. This approach was successfully used in dimension
one by Bertsimas and Popescu [1]. In higher dimensions however, their relaxation algorithm
requires the solution of a number of linear programs that is potentially exponential in n, the
number of assets. This makes the method prohibitive for large-scale problems. Finally, as
in Henkin and Shananin [9], one can think of (2) as an integral transform inversion problem.
This is the approach we adopt to design an efficient relaxation in the general case, based on
shape constraints on the call price as a function of the weight vector w and strike price K.

We examine in detail a special case of the problem, in which prices on options of individual
assets, as well as forward prices, are given, and the option to be priced involves a non-negative
weight vector w. Our contribution there is to provide a solution that is polynomial-time in
the number of assets, involving a linear program with O(n) variables and constraints, where
n is the number of assets. We consider two cases for each of the upper and lower bounds:
one where the forward price constraints are included and the simpler case when these price
constraints are ignored. Except for the lower bound with forward price constraints included,
we prove that our bounds are exact, that is, they are attained (possibly in the limit) by
some distribution π consistent with observed option prices. We obtain expressions for these
optimal measures, and use them to prove tightness of the linear programming upper bounds
applied to the special case of individual option prices, including forward price information.

Our paper is organized as follows. Our results are based on a dual formulation of the
general problem that is described in 1.2. We obtain in section 2 upper and lower bounds,
in the special cases referred to above, and then for the general problem. We discuss the
tightness of the bounds in section 3. Our results are summarized in 4. Finally, section 5
provides some numerical examples.

1.2 Dual of the semi-infinite program

In the general case, we can write the upper bound problem as a semi-infinite program:

psup := sup
π∈K

∫

Rn
+

ψ(x)π(x)dx subject to

∫

Rn
+

φ(x)π(x)dx = p,

∫

Rn
+

π(x)dx = 1, (3)

where
ψ(x) := (wTx−K0)+, φi(x) := (wT

i x−Ki)+, i = 1, . . . , m.

We define the Lagrangian (on K × Rm+1):

L(π, λ, λ0) =

∫

Rn
+

ψ(x)π(x)dx+ λT

(

p−
∫

Rn
+

φ(x)π(x)dx

)

+ λ0(1 −
∫

Rn
+

π(x)dx),

and, as in [10], we can explicit the dual of (3):

dsup := inf
λ0,λ

: λTp+ λ0 : λTφ(x) + λ0 ≥ ψ(x) for every x ∈ Rn
+

= inf
λ

: sup
x≥0

: λTp + ψ(x) − λTφ(x).
(4)

Both primal and dual problems have very intuitive financial interpretations. The primal
problem looks for a state price density (see for example [5]) that maximizes the target
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option while satisfying the pricing constraints imposed by the current market conditions.
The dual problem looks for the least expensive portfolio of options plus cash, λTφ(x) + λ0,
that dominates the option payoff ψ(x). Of course, the dual problem above yields an upper
bound on the upper bound.

Similarly, the computation of the lower bound involves

pinf := inf
π∈K

∫

Rn
+

ψ(x)π(x)dx subject to

∫

Rn
+

φ(x)π(x)dx = p,

∫

Rn
+

π(x)dx = 1, (5)

whose dual is

dinf := sup
λ0,λ

: λTp+ λ0 : λTφ(x) + λ0 ≤ ψ(x) for every x ∈ Rn
+

= sup
λ

: inf
x≥0

: λTp+ ψ(x) − λTφ(x).
(6)

Here, the dual problem provides a lower bound on the lower bound.
General results on semi-infinite linear programs establish the equivalence between the

primal and dual formulations. We cite here a sufficient constraint qualification condition
for perfect duality from [10], which makes an assumption about the support of optimal
distributions. (We focus now on the lower bound; a similar result holds for the upper bound
problem.)

Proposition 1 Assume that for problem (6), without loss of generality, the support of the
asset price distribution can be restricted to a given compact set B ⊂ Rn

+. Assume further
that there exist a pair (λ0, λ) ∈ Rn+1 such that:

λTφ(x) + λ0 < ψ(x) for all x ∈ B.

Then if dinf is finite, perfect duality holds, namely dinf = pinf .

This constraint qualification condition trivially holds when φ(x) and ψ(x) are Call option
payoffs hence we have dinf = pinf , provided that the support of distributions feasible for our
problem can be restricted to some compact B ⊂ Rn

+. However, this may not be the case for
the bounds detailed below and we will prove perfect duality directly whenever possible.

2 Upper and Lower Bounds

In this section, we address the problem of computing the bounds. We first consider the
case when the observed prices correspond to options on each individual assets. In practice,
these observations always include the forward contract prices Eπxi = qi, i = 1, . . . , n, which
are quoted by the market, and we seek to exploit the forward price information. Then we
specialize in 2.2 these results to the case when the forward prices are ignored; we examine
this case because it is useful in the proofs of perfect duality in section 3. Finally we address
the general case in 2.3.
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2.1 Option and forward price constraints

We examine the problem of computing upper and lower bounds on

Eπ(wTx−K0)+,

given the 2n constraints

Eπ(xi −Ki)+ = pi, Eπxi = qi, i = 1, . . . , n, (7)

where K0 > 0 and w,K, p, q are given vectors of Rn
++.

We will assume that 0 ≤ p ≤ q ≤ p + K, which is a necessary and sufficient condition
for the problem above to be feasible. Sufficiency is obtained with the discrete distribution
defined by

x =

{

2p+K with probability 1/2,
2(q − p) −K with probability 1/2.

(8)

From the form of the constraints, we also observe that the constraints 0 ≤ p ≤ q ≤ p + K
are necessary.

2.1.1 Upper bound

In this section, we apply the duality formalism to the upper bound problem with constraints
described in (7).

In view of the general result (4), the dual problem can be expressed as

dsup = inf
λ+µ≥w

sup
x≥0

λTp + µTq + (wTx−K0)+ − λT (x−K)+ − µTx, (9)

where, without loss of generality, we have included the constraint λ + µ ≥ w, in order to
ensure that the inner supremum is finite. We introduce a partition of Rn

+ as follows. To a
given subset I of {1, . . . , n}, we associate a subset DI of Rn

+, defined by

DI = {x : xi > Ki, i ∈ I, 0 ≤ xi ≤ Ki, i ∈ J} ,

where J denotes the complement of I in {1, . . . , n}. For z ∈ Rn, let zI be the vector formed
with the elements (zi)i∈I , in the ascending order of indices in I.

We have

dsup = inf
λ+µ≥w

max
t∈{0,1}

max
I⊆{1,...,n}

sup
x∈DI

λTp+ µT q + t(wTx−K0) − λT
I (xI −KI) − µTx

= inf
λ+µ≥w

max
t∈{0,1}

max
I⊆{1,...,n}

λTp+ µT q + h(λ, µ, I, t),

where h(λ, µ, I, t) is given by

h(λ, µ, I, t) := sup
x∈DI

t(wTx−K0) − λT
I (xI −KI) − µTx

= sup
0≤xJ≤KJ

(twJ − µJ)TxJ − tK0 + λT
I KI + sup

xI>KI

(twI − µI − λI)
TxI

=

{

(twJ − µJ)T
+KJ − tK0 + (twI − µI)

TKI if λI + µI ≥ twI ,
+∞ otherwise.
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We note that finiteness of h(λ, µ, I, t) is guaranteed by λ + µ ≥ w and t ≥ 0. When these
conditions hold, the maximum value of h(λ, µ, I, t) over I ⊆ {1, . . . , n} is obtained when the
complement J is the full set, that is, when I is empty. We obtain

max
I⊆{1,...,n}

h(λ, µ, I, t) = (tw − µ)T
+K − tK0.

Optimizing over t, we obtain

max
t∈{0,1}

max
I⊆{1,...,n}

h(λ, µ, I, t) = max
(

(−µ)T
+K, (w − µ)T

+K −K0

)

.

This results in the following expression for dsup:

dsup = inf
λ+µ≥w

λTp+ µT q + max
(

(−µ)T
+K, (w − µ)T

+K −K0

)

= inf
µ
wTp+ µT (q − p) + max

(

(−µ)T
+K, (w − µ)T

+K −K0

)

, (10)

which admits the following linear programming representation:

dsup = inf
µ,t,v,z

: wTp+ µT (q − p) + t t ≥ vTK, v ≥ 0, v + µ ≥ 0

t ≥ zTK −K0, z ≥ 0, z + µ ≥ w.

The problem is feasible, and is thus equivalent to its dual. After some elimination of dual
variables, the dual writes

dsup = max
y,β

wTp+ wTy − βK0 : (1 − β)K ≥ q − p− y ≥ 0
βK ≥ y ≥ 0.

Note that the above problem is feasible if and only if p ≤ q ≤ p +K. We thus recover the
primal feasibility condition mentioned before. This condition ensures that the dual bound
dsup is finite. The above further reduces to the one-dimensional problem:

dsup = max
0≤β≤1

: wTp+
∑

i

wi min(qi − pi, βKi) − βK0. (11)

The above problem is the maximization of a piecewise linear concave function of one variable,
thus the maximum is attained at one of the break points βj := (qj − pj)/Kj ∈ [0 : 1],
j = 1, . . . , n, or for β = 0, 1. This way, we can obtain a closed-form expression for the upper
bound, namely

dsup = max
0≤j≤n+1

wTp+
∑

i

wi min(qi − pi, βjKi) − βjK0,

with the convention β0 = 0, βn+1 = 1.
We can check that the above bound satisfies some basic properties: it is convex in w and

concave in p, q. Also, when w = ei (the i-th unit vector), and K0 = Ki, we obtain dsup = pi,
while for Ki = 0, we obtain dsup = qi.
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2.1.2 Lower bound

In the lower bound case, the dual problem is

dinf = sup
λ+µ≤w

inf
x≥0

λTp+ µTq + (wTx−K0)+ − λT (x−K)+ − µTx,

where we exploited the fact that the inner infimum is −∞ unless λ+ µ ≤ w.
Let us use the same notation as before. We have

dinf = sup
λ+µ≤w

min
I⊆{1,...,n}

inf
x∈DI

λTp+ µTq + (wTx−K0)+ − λT
I (xI −KI) − µTx

= sup
λ+µ≤w

min
I⊆{1,...,n}

λTp+ µT q + h(λ, µ, I),

where

h(λ, µ, I) = inf
x,y0

y0 − λT
I (xI −KI) − µTx : x ∈ DI , y0 ≥ wTx−K0, y0 ≥ 0.

We have by linear programming duality

h(λ, µ, I) = sup (αw − µ)TK − αK0 − (αwJ − µJ)T
+KJ : αwI − λI − µI ≥ 0

0 ≤ α ≤ 1

Thus
dinf = sup

λ+µ≤w

λTp+ µT (q −K) + min
I⊆{1,...,n}

f(λ, µ, I),

where
f(λ, µ, I) := sup

α(λ,µ,I)≤α≤1

α(wTK −K0) − (αwJ − µJ)T
+KJ ,

and

α(λ, µ, I) := max
i∈I

(λi + µi)+

wi

,

with the convention that α(λ, µ, I) = 0 when I is empty.
Let I be a non-empty subset of {1, . . . , n}. Let i ∈ arg maxi∈I(λi + µi)+/wi. We observe

that
α(λ, µ, I) = α(λ, µ, {i}),

and
f(λ, µ, I) ≥ f(λ, µ, {i}),

which dramatically reduces the complexity of the minimization subproblem: instead of com-
puting the minimum over all 2n sets I ⊆ {1, . . . , n} it is sufficient to pick I in the set of
singletons of {1, . . . , n}, or I = ∅. Therefore, the problem reads as a linear program

dinf = sup
λ,µ,α0,...,αn

λTp+ µT (q −K) + h : λ + µ ≤ w
h ≤ α0(w

TK −K0) − (α0w − µ)T
+K, 0 ≤ α0 ≤ 1

∀i : h ≤ αi(w
TK −K0) −

∑

j 6=i(αiwj − µj)+Kj

(λi + µi)+/wi ≤ αi ≤ 1,
(12)

and can be solved efficiently, since it has O(n) constraints and variables.
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2.2 Ignoring forward price constraints

In this section, we examine the problem in the case when the forward price constraints
Eπx = q are ignored. The simple bounds we obtain in this setting will prove useful for
obtaining perfect duality results later.

2.2.1 Upper bound

The new upper bound is readily obtained by setting the variable µ, which is the variable
dual to the constraint Eπx = q, to zero in the expression (10). We get the simple closed-form
expression

dsup = wTp + (wTK −K0)+, (13)

which can be obtained as a direct consequence of Jensen’s inequality applied to the function
x→ x+.

2.2.2 Lower bound

A closed-form expression. For the lower bound, we again set the dual variable µ to zero
in the expression (12). We obtain

dinf = sup
0≤ξ≤e

p(w)T ξ + h : h ≤ 0, h ≤ ξi(wiKi −K0), 1 ≤ i ≤ n. (14)

We note that dinf can be expressed as the solution of a non-linear, convex optimization
problem:

dinf = sup
ξ

p(w)T ξ − max
1≤i≤n

ξi(K0 − wiKi)+ : 0 ≤ ξ ≤ e, (15)

or its dual:

dinf = inf
ν

n
∑

i=1

(piwi − νi(K0 − wiKi)+)+ : νT e = 1, ν ≥ 0. (16)

We can reduce the optimization problem to a line search over a scalar parameter, by
elimination of the variable ξ. We obtain

dinf =
∑

i : Kiw(i)≥K0

piw(i) + sup
v≥0

∑

i : Kiw(i)<K0

piw(i) min(1,
v

K0 −Kiw(i)
) − v.

The minimization above can be further reduced to a closed-form expression by noting that
the piecewise-linear function (of v) involved has break points at γi = K0 −Kiwi (for i such
that γi > 0) and 0. Thus:

dinf =
∑

i : Kiwi≥K0

piwi + max
j : Kjwj<K0

(

∑

i : Kiwi<K0

piwi min(1,
K0 −Kjwj

K0 −Kiwi

) −K0 + wjKj

)

+

.

(17)
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Interpretation in terms of portfolios. Although the development above has the defi-
nite advantage of being completely constructive, we can get a more direct and perhaps more
intuitive proof of (17) by interpreting its equivalent form (15) in terms of portfolio inequali-
ties. Without loss of generality, we can assume that w0 = e, where e is the n-vector of ones.
To show

dinf = sup
0≤ξ≤e

pT ξ − max
1≤i≤n

ξi(K0 −Ki)+,

it suffices to show that

ξT (x−K)+ − max
1≤i≤n

ξi(K0 −Ki)+ ≤
(

eTx−K0

)

+
for all x ∈ Rn

+ (18)

holds for every ξ such that 0 ≤ ξ ≤ e. The above can be interpreted as a portfolio inequal-
ity: the price of the options portfolio ξT (x−K)+, together with a certain amount of cash
(negative values meaning borrowing), is dominated by the payoff.

Let us prove the portfolio inequality above. Let ξ be such that 0 ≤ ξ ≤ e. Condition
(18) trivially holds when x = 0. Let us now consider x ∈ Rn

+, x 6= 0. Then, eTx > 0. First,
assume (0 <)eTx ≤ K0, then:

ξT (x−K)+ ≤ ξT
( x

eTx
K0 −K

)

+
,

and by convexity of the function x→ x+, we have:

ξT
( x

eTx
K0 −K

)

+
≤

n
∑

i=1

ξi
xi

eTx
(K0 −Ki)+

≤ max
i=1,...,n

ξi (K0 −Ki)+ . (19)

Assume now that eTx ≥ K0, and let i0 = arg maxi=1,...,n ξi (K0 −Ki)+ , we can write

n
∑

i=1,i6=i0

ξixi + ξi0 (xi0 −Ki)+ − max
i=1,...,n

ξi (K0 −Ki)+ ≤
(

eTx−K0

)

+

as
n
∑

i=1,i6=i0

ξixi + ξi0 (xi0 −Ki)+ − max
i=1,...,n

ξi (K0 −Ki)+ ≤ eTx−K0,

which holds since 0 ≤ ξ ≤ e and

ξi0
(

(xi0 −Ki0)+ − (K0 −Ki0)+

)

≤ xi0 −K0.

The above, together with (19), proves the inequality (18). This shows (15) directly.

2.3 Relaxation for the general case

2.3.1 An integral transform

Let us come back to the original problem, for p ∈ Rm
+ , K ∈ Rm

+ , w0 ∈ Rn, wi ∈ Rn,
i = 1, ..., m and K0 ≥ 0. We consider the problem of computing upper and lower bounds on
the price of an European call basket option with strike K0 and weight vector w0:

Eπ(wT
0 x−K0)+,

9



with respect to all probability distributions π ∈ K on the asset price vector x, consistent
with a given set of m observed prices pi of options on other baskets and forward prices qi,
that is, given

Eπ(w
T
i x−Ki)+ = pi, i = 1, . . . , m and Eπxj = qj, j = 1, . . . , n.

If we write, for some π ∈ K:

C(w,K) = Eπ(wTx−K)+

=

∫

Rn
+

(wTx−K)+dπ(x),

we can think of Cπ(w,K) as a particular integral transform of the measure π. We can
compute the inverse of this integral transform. If we assume that the measure π is absolutely
continuous with respect to the Lebesgue measure with density π(x), then for almost all K
we have:

f̂(w,K) :=
∂2C(w,K)

∂K2
=

∫

Rn
+

δ(wTx−K)π(x)dx,

where δ(x) is the Dirac Delta function. This means that f̂(w,K) is the Radon transform
(see [8] or [13]) of the measure π. The general pricing problem above can then be rewritten
as the following infinite dimensional problem:

minimize/maximize f(w0, K0)
subject to f(wi, Ki) = pi, i = 1, . . . , m

f(w,K) ∈ RC ,

where RC is the range of the (linear) integral transform

C : K → RC

π → C(w,K) =
∫

Rn
+

(wTx−K)+dπ(x).

Thus, the problem of finding all possible arbitrage-free option prices becomes equivalent to
that of characterizing the range of the Radon transform on the set of nonnegative measures
K. This has been done by [9] in the context of production functions (which can be thought
of as Put options). Using Call-Put parity, we can directly derive from the theorem 3.2 in [9]
the following result:

Proposition 2 A function C(w,K), with w ∈ Rn
+ and K > 0 belongs to RC , i.e. it can be

represented in the form

C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x),

where π is a nonnegative measure on a compact of Rn
+, if and only if the following conditions

hold.

• C(w,K) is convex and homogenous of degree one;
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• for every w ∈ Rn
++, we have

lim
K→∞

C(w,K) = 0 and lim
K→0+

∂C(w,K)

∂K
= −1;

• the function

F (w) =

∫ ∞

0

e−Kd

(

∂C(w,K)

∂K

)

belongs to C∞
0 (Rn

+) and for some w̃ ∈ Rn
+ the inequalities:

(−1)k+1Dξ1 ...Dξk
F (λw̃) ≥ 0

hold for all positive integers k and λ ∈ R++ and all ξ1, ..., ξk in Rn
+.

2.3.2 Linear programming relaxation

The conditions above are not tractable in the general case but we can formulate a relax-
ation of the original program by simply dropping the last condition, and replacing it with a
(necessary) linearity condition on C(w, 0) with respect to w. We get an upper bound on the
upper bound (resp. a lower bound on the lower bound) solution by computing:

sup / inf C(w0, K0)
subject to C(w,K) convex in (K,w)

C(w,K) homogeneous of degree 1
−1 ≤ ∂C(w,K)/∂K ≤ 0 and C(w,K) nondecreasing in w
C(wi, 0) = wT

i q, i = 1, ..., m
C(wi, Ki) = pi, i = 1, ..., m.

(20)

This is an infinite dimensional linear program in the variable C(w,K) ∈ C(Rn+1 → R+).
As we show below, this infinite program can be reduced to a finite LP if we define pi = wT

i q
and Ki = 0 for i = m+ 1, ..., m+ n and pm+n+1 = wT q with Km+n+1 = 0.

Proposition 3 If the following finite LP in the variables p0 ∈ R+ and gi ∈ Rn+1 for
i = 0, ..., m+ n + 1:

maximize/minimize p0

subject to 〈gi, (wj, Kj) − (wi, Ki)〉 ≤ pj − pi, i, j = 0, ..., m+ n + 1
gi,j ≥ 0,−1 ≤ gi,n+1 ≤ 0, i = 0, ..., m+ n+ 1, j = 1, ..., n
〈gi, (wi, Ki)〉 = pi, i = 0, ..., m+ n+ 1,

(21)

is strictly feasible and its optimal value is finite (hence it is attained), the infinite program
(20) and its discretization (21) have the same optimal value. Furthermore, an optimal point
of (20) can be constructed from the optimal solution to (21).

As in [3], we first notice that as a discretization of the infinite program (20), the finite
LP will compute a lower (or upper) bound on its optimal value. Let us now show that this
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bound is in fact equal to the optimal value of (20). If we note z∗ =
[

p∗0, g
∗T
0 , . . . , g∗Tk

]T
the

optimal solution to the LP problem above and if we define:

s(w,K) = max
i=0,...,m+n+1

{p∗i + 〈g∗i , (w,K) − (wi, Ki)〉} ,

s(x) satisfies
s(xi) = pi, i = 1, . . . , m+ n+ 1,

and, by construction, s(x0) attains the lower bound p0 computed in the finite LP. Also, s(x)
is convex as the pointwise maximum of affine functions and is piecewise affine with gradient
gi, which implies that it also verifies the convexity and monotonicity conditions in (20), hence
it is a feasible point of the infinite dimensional problem. This means that both problems
have the same optimal value and s(x) is an optimal solution to the Infinite Linear Program
in (20).

3 Some Cases of Perfect Duality

In this section, we prove that the bounds we obtained before are tight in some special cases.

3.1 Upper bound without forwards

We first compute the optimal probability measures corresponding to the upper and lower
price bounds, when forward prices are ignored. We thus consider the problem examined in
2.2.1. Based on (13), we can recover an optimal distribution, or a sequence of distributions
which achieve the bound in the limit. This provides a direct proof of the fact that psup = dsup

in the case when we ignore the forward price information.
If wTK ≥ K0, we choose a distribution π of asset prices such that x = p + K with

probability one. Then, constraints (2) are trivially satisfied, and the objective (1) becomes

Eπ(w
Tx−K0)+ = (wT (p+K) −K0)+ = wTp+ wTK −K0 = dsup.

If wTK < K0, we have dsup = wTp, and the upper bound is only attained in the limit. For
a given ε > 0, we define a probability distribution π(ε) on the asset prices as follows:

x =

{

ε−1p+K with probability ε,
0 with probability 1 − ε.

(22)

Then, we have

Eπ(ε)(x−K)+ = ε(ε−1p+K −K))+ + (1 − ε)(−K)+ = p,

while the objective becomes

Eπ(ε)(w
Tx−K0)+ = ε(wT (ε−1p+K) −K0)+ + (1 − ε)(−K0)+

= (wTp+ ε(wTK −K0))+.

When ε → 0, the above quantity goes to wTp = dsup, as claimed.
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3.2 Upper bound with forwards

We now consider the upper bound result with option and forward price constraints, obtained
in 2.1.1. Without loss of generality, we assume eTw = 1. In (11) we obtained:

dsup = sup
0≤β≤1

: wTp+
∑

i

wi min(qi − pi, βKi) − βK0,

which can be rewritten (the min is taken elementwise):

sup
0≤β≤1

wT min(q − βK0e, p+ β (K −K0)),

or again:
sup

0≤β≤1
inf

t∈[0,1]m
wT ((1 − t)(q − βK0e) + t(p+ β (Ki −K0))).

Using LP duality we know that this is also equal to (with eTw = 1):

inf
t∈[0,1]m

sup
0≤β≤1

β
(

wT tK −K0

)

+ wT (1 − t)q + wT tp.

We express the above as

inf
t∈[0,1]m

wT (1 − t)q + wT tp+
(

wT tK −K0

)

+
.

This problem can be solved exactly as a finite linear program, and we obtain t∗ such that:

dsup = wT ((1 − t∗)q + t∗p) +
(

wT t∗K −K0

)

+
. (23)

We recognize here the expression of the upper bound on the price of a basket, where we are
only given the following option price constraints (see 2.2.1):

Eπ(xi − K̂i)+ = p̂i, i = 1, . . . , n,

where K̂ := t∗K and p̂ := (1− t∗)q+ t∗p. This means that we can directly recover the upper
bound probability as in (22), substituting (p̂, K̂) with (p,K), setting π(ε) such that:

x =

{

ε−1p̂+ K̂ with probability ε,
0 with probability 1 − ε,

and taking the limit when ε→ 0.

3.3 Lower bound without forwards

We consider the problem examined in 2.2.2. The linear programming expression (16) allows
us to recover a sequence of distributions that are optimal in the limit, as follows.

Let ν be an optimal vector for problem (16). We remark that ν can be interpreted as a
probability distribution. Let I be the set of indices i such that K0 > wiKi. We note that
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i 6∈ I implies νi = 0. For simplicity we assume that I = {1, . . . , m}, where 0 ≤ m ≤ n (the
choice m = 0 corresponding to empty I).

First we examine the case when m = 0, that is, I is empty. In other words, mini w(i)Ki ≥
K0, and therefore dinf = pTw. For a given ε > 0, we choose the probability distribution on
the asset prices given by (22), and follow the same steps taken before, for the upper bound.
We obtain that dinf is attained as ε→ 0.

Next, we assume m ≥ 1. Let α = (n−m)/m. For ε such that 0 < α−1 min1≤i≤m νi( 6= 0),
we define vector ν(ε) by

νi(ε) =

{

νi − αε if 1 ≤ i ≤ m,
ε otherwise.

Since ε is small enough, vector ν(ε) satisfies the constraints of problem (16).
We now define a distribution π(ε) on the asset price vector x as follows.

x = xε(i) with probability νi(ε),

where

xε
j(i) =

{ pj

νj(ε)
+Kj if j = i,

0 otherwise.

Note that xε
j(i) is always well-defined, since νj(ε) > 0 for every j.

Let us check that the distribution π(ε) of asset prices satisfies the constraints (2). For
every j, 1 ≤ j ≤ n, we have

E(xj −Kj)+ =
∑n

i=1 νi(ε)(x
ε
j(i) −Kj)+

= νj(ε)(x
ε
j(j) −Kj)+

= pj .

Let us now check that with this choice of asset price distribution, the objective (1) attains
the lower bound dinf , when we let ε→ 0. We have

Eπ(ε)(w
Tx−K0)+ =

∑n

i=1 νi(w
Txε(i) −K0)+

=
∑n

i=1 νi(ε)(
∑n

j=1wjx
ε
j(i) −K0)+

=
∑n

i=1 νi(ε)(wix
ε
i(i) −K0)+

=
∑n

i=1 νi(ε)(wi(
pi

νi(ε)
+Ki) −K0)+

=
∑n

i=1(wipi − νi(ε)(K0 − wiKi))+.

Letting ε→ 0, we obtain

limε→0Eπ(ε)(w
Tx−K0)+ =

∑m

i=1(wipi − νi(K0 − wiKi))+ +
∑n

i=m+1 wipi

=
∑n

i=1(wipi − νi(K0 − wiKi)+)+

= dinf ,

as claimed. This concludes our proof that dinf = pinf in the absence of constraints on forward
prices.
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3.4 Tightness of the linear programming upper bound relaxation

We now show that for the special case considered in section 2.1.1, namely when we have
option and forward price constraints on individual assets, and we seek to compute the upper
bound, the linear programming relaxation devised in (21) yields a tight result. In order for
our problem to be feasible, we have assumed 0 ≤ p ≤ q ≤ p +K.

In this case, the LP (21) is feasible and its feasible set is compact, which ensures that
there exist an optimal solution. Indeed, we can form a piecewise affine function that is
feasible for (20) by taking C(w0, k0) = Eπ(wT

0 x−K0)+, where π is the probability measure
defined in (8), precisely

Eπ(wT
0 x−K0)+ = max

{

wT
0 q −K0, w

T
0 p−K0/2, w

T
0 (q − p) −K0/2, 0

}

.

This function also turns out to correspond to a feasible point of (21); the variables gi in (21)
are simply the subgradients of C(w0, k0) at the data points. Finally, the LP in (21) is finite,
since we always have 0 ≤ Eπ(wT

0 x − K0)+ ≤ wT
0 q and the feasible set of (21) is compact.

This means that the optimum in (21) is attained.
First, we prove tightness of the LP relaxation in the case when forward price information

is ignored. The setting of section 2.2.1 assumes that m = n, and w0 ∈ Rn
+. We note

ei, the i-th unit vector. Without loss of generality, we set wT
0 e = 1. Since the function

C(w0, K0) = wT
0 p +

(

wT
0K −K0

)

+
is a feasible point of the infinite LP (20), if we call V LP

the upper bound computed by the linear program (21), we must have:

V LP ≥ wT
0 p+

(

wT
0K −K0

)

+
.

Now, using the necessary conditions in (20) and the convexity of Eπε

(

wTx−K
)

+
in (w,K)

we can write

Eπε

(

wT
0 x−K0

)

+
= Eπε

(

wT
0 x−

(

wT
0K +

(

K0 − wT
0K
)))

+

≤
n
∑

i=1

w0,iEπε

(

xi −
(

Ki +
(

K0 − wT
0 K
)))

+

=
n
∑

i=1

w0,iC
(

ei, Ki +
(

K0 − wT
0K
))

.

The conditions on the slope of the function C(w,K) imply

n
∑

i=1

w0,iC
(

ei, Ki +
(

K0 − wT
0 K
))

≤ wT
0 p+

(

wT
0 K −K0

)

+
.

Hence, V LP ≤ wT
0 p+

(

wT
0K −K0

)

+
and finally

V LP = wT
0 p+

(

wT
0K −K0

)

+
, (24)

where we recover the expression found in (13). This means that the upper bound computed
by the LP relaxation is tight in the particular case considered above.

15



Now we turn to the case when forward price constraints Eπxi = qi for i = 1, . . . , n, are
included. As already observed in 2.1.1, the function

dsup(w0, K0) = max
0≤j≤n+1

: wT
0 p+

∑

i

w0,i min(qi − pi, βjKi) − βjK0,

is convex in (w0, K0). Also, when w0 = ei, and K0 = Ki, we obtain dsup = pi, while for
Ki = 0, we obtain dsup = qi. This means that dsup(w,K) is a feasible point of the infinite
program (20) and hence V LP ≥ dsup(w0, K0).

Since the finite LP (21) is attained, at a point denoted by z∗ =
[

p∗0, g
∗T
0 , . . . , g∗Tk

]T
, we

can define the call price function

dLP(w,K) = max
i=0,...,m+n+1

{p∗i + 〈g∗i , (w,K) − (wi, Ki)〉} ,

corresponding to the strike prices K̂ = t∗K and option prices p̂ = (1 − t∗)q + t∗p, as in 3.2.
By convexity of dLP(w,K), we have dLP(ei, K̂) ≤ p̂i for i = 1, . . . , n. We know then from
(24) that dLP(w0, K0) = V LP ≤ dsup(w0, K0), hence finally dLP(w0, K0) = dsup(w0, K0). This
shows that the LP relaxation of the upper bound is tight when the input is composed of
options and forward prices as in (7).

4 Summary of Results

We are ready to summarize our results.

Theorem 4 Tight upper and lower bounds on the price pbasket of an European basket call
option involving n assets, with weight vector w > 0 and strike K0, given the n prices pi of
individual European call options with strike Ki > 0, are given by

pinf ≤ pbasket = Eπ(wTx−K0)+ ≤ psup =

n
∑

i=1

piwi + (

n
∑

i=1

wiKi −K0)+,

where

pinf =
∑

i : Kiwi≥K0

piwi + max
j : Kjwj<K0

(

∑

i : Kiwi<K0

piwi min(1,
K0 −Kjwj

K0 −Kiwi

) −K0 + wjKj

)

+

.

When one includes the forward contract prices information Eπx = q, then the problem is
feasible if and only if p ≤ q ≤ p +K. The tight upper bound then becomes

psup = max
0≤j≤n+1

wTp +
∑

i

wi min(qi − pi, βjKi) − βjK0,

with the convention β0 = 0, βn+1 = 1, and βj := (qj − pj)/Kj, j = 1, . . . , n.
The lower bound pinf is given by the solution of the linear program defined in (12). This

bound is tight when forward prices are ignored.
In the general version of the problem, the linear programming relaxation (21) provides

bounds in polynomial-time. The upper bound is tight in the special cases considered above.

16



Note that we have not proven the tightness of the lower bound in the case when individual
option prices are given, and forward price constraints are included. We conjecture that the
lower bound computed by (12) is tight, and we leave this topic for further research.

We observe that the results pertaining to our special cases (those involving individual
option and forward prices only) are readily extended to a situation where we only have upper
and lower bounds on these prices: simply replace the prices pi by their upper bound in the
expression for the upper bound of the basket price, and by their lower bound to compute
the lower bound on the basket price.

5 Numerical results

We test here the various bounds obtained above on a simulated arbitrage-free dataset. We
first evaluate by Monte-Carlo simulation the following option prices:

C(w0, K0) = E
(

wT
0 x−K0

)

+
,

where xi,T = Si exp
(

gi

√
T − 1

2
Vi,iT

)

for i = 1, . . . , 5, with g a centered multivariate Gaussian

variable with given covariance matrix V . The xi are the simulated Black Scholes [2] lognormal
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Figure 1: Upper and lower price bounds obtained for various strikes using both the explicit
bounds and the LP relaxation method.

asset prices at maturity, with S the initial stock values. The numerical values used here are
S = {0.7, 0.5, 0.4, 0.4, 0.4}, w0 = {0.2, 0.2, 0.2, 0.2, 0.2}, T = 5 years and the covariance
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matrix is given by:

V =
11

100













0.64 0.59 0.32 0.12 0.06
0.59 1 0.67 0.28 0.13
0.32 0.67 0.64 0.29 0.14
0.12 0.28 0.29 0.36 0.11
0.06 0.13 0.14 0.11 0.16













.

All individual options are at-the-money, hence K = {0.7, 0.5, 0.4, 0.4, 0.4}. We get p =
{0.0161, 0.0143, 0.0093, 0.0070, 0.0047}. In figure (1), we plot the upper and lower bounds
obtained for various strikes using both the explicit bounds and the LP relaxation methods.
We can notice that the lower bound computed using (12) is tighter than that provided by
the LP relaxation in (21). We also observe that, as showed in 3.4, the two upper bounds
coincide.
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