Worst-Case Simulation of Uncertain Systems

Laurent El Ghaoui* and Giuseppe Calafiore**

* Ecole Nationale Supérieure de Techniques Avancées — Paris
** Dipartimento di Automatica e Informatica, Politecnico di Torino — Italy.

Abstract

In this paper we consider the problem of worst-case simulation for a discrete-time system
with structured uncertainty. The approach is based on the recursive computation of
ellipsoids of confidence for the system state, based on semidefinite programming.

1 Introduction

This paper is concerned with the problem of estimating the state of an uncertain discrete-
time system of the form

Tk

wk-l—l:{Ak bk}[ 1 ], kZO,l,Q,...

where the initial state 2o € R™ is only known within a given ellipsoid, and the system matrix
[A) bi] is only known to belong to a given set U (we will be more specific about U shortly).

The basic problem we consider is to compute an ellipsoid of confidence for the state
Tra1, based on a deterministic uncertainty model for the system matrices,previous confidence
ellipsoid for the state x;. This setting corresponds to the classical problem of state prediction,
but in the deterministic (or set-membership) framework. The problems of measurement-
based prediction (smoothing and filtering) may also be treated by the method presented in
this paper and are object of current research.

The idea of propagating ellipsoids of confidence for systems with deterministic uncertainty
was first proposed by Schweppe [10] and Bertzekas [1], and later developed by several authors,
including Kurzhanski [6] and Chernousko [3]. These authors consider the case with additive
uncertainty, meaning that the system matrix [A b] is assumed to be exactly known. Of
course, the assumption that the dynamic and measurement matrices are exactly known is
very strong. The benefit of this simplification is that it yields recursive equations for the
predictive filter that are simple to implement and have a structure similar to that of the
Kalman filter equations. Recently, Savkin and Petersen [9] have considered a problem with
a special kind of structured uncertainty, with the assumption that the uncertainty is bounded



in an energy sense. These assumptions lead to recursive Riccati equations for the confidence
ellipsoid, similar in spirit to the above-mentioned approach.

The main result of this paper is that ellipsoids of confidence, of size minimal in a certain
geometrical sense, can be recursively computed in polynomial time via semidefinite program-
ming (SDP). SDPs are convex optimization problems that generalize linear programming,
and which can be solved with great theoretical and practical efficiency, using interior-point
methods [7, 12].

The considered uncertainty model encompasses a very wide variety of perturbation struc-
tures, for example it can be used for uncertain systems described by matrices depending
rationally on unknown-but-bounded parameters. It can also be used with more classical
uncertainty models, e.g. for systems with independent additive perturbations on the state
and measurement equations (these are deterministic equivalents of systems with independent
process and measurement noise, as used in Kalman filtering).

Our approach basically extends the existing results to the case with structured uncer-
tainty on every system matrix. To understand why the problem is much more difficult when
Ay is allowed to be uncertain, note that if Ay is exactly known, and if both z; and by, belong
to a convex set, then zp,; also belongs to a convex set; this is not true if Ay is uncertain.
We pay a price for being able to handle more general perturbation models, of course: we
do not end up with recursive equations, but recursive optimization problems. However, the
price is not to too high, since computations can still be done in polynomial-time.

The methods developed here belong to the class of methods now known as robust pro-
gramming in the field of optimization, and developed by Oustry, El Ghaoui and Lebret [?, ?]
and Ben Tal and Nemirovskii [?]. Robust optimization is concerned with decision (opti-
mization) problems with uncertain (unknown-but-bounded) data, and tries to compute (via
semidefinite programming) robust solutions, that is, solutions that are guaranteed to satisfy
the (uncertain) constraints of the optimization problem, despite the perturbations.

2 Preliminaries

2.1 Notation

For a square matrix X, X > 0 (resp. X > 0) means X is symmetric, and positive-definite
(resp. semidefinite). For a square matrix U, UT denotes the (Moore-Penrose) pseudo-inverse

of U.
For P € R™" with P > 0, and « € R", the notation K(P,z) denotes the ellipsoid

E(Pe)={¢ | (€=2)TP T (¢—2) <1},

where x is the center, and P determines the “shape” of the ellipsoid.

2.2 Measures of size of an ellipsoid

The size of an ellipsoid is a function of the shape matrix P; we will denote it by ¢(P) in
the sequel. There are many alternative measures of size for an ellipsoid: volume, largest



measure function ¢ ‘ measure

log det P volume (convex in P~1)
TrP sum of squared semi-axis lengths (convex in both P and P~')
Amax(P) largest semi-axis length (convex in P, quasi-convex in P~!)

Table 1: Examples of functions related to the size of ellipsoid FE(P,x), that are (quasi-)
convex functions of P or of P~! over the cone of positive-definite matrices.

semi-axis length, etc. Our method will work on any such size function ¢, provided it is a
(quasi-) convex function of the “shape” matrix P, or of its inverse, over the set of positive-
definite matrices. Examples of such functions, and their geometrical interpretation, is given
in Table 1.

In the sequel, we concentrate on the measure of size given by the sum of squares of
semi-axis lengths; the extension to the other measures given in Table 1 is left to the reader.

2.3 Semidefinite programming

We will seek to formulate our estimation problems in terms of semidefinite programming
problems, which are convex optimization problems involving linear matrix inequalities (LMIs).
An LMI is a constraint on a vector x € R” of the form

Flx)=Fo+ > x:Fi =0 (1)
=1
where the symmetric matrices F; = FI € RV*N i =0,...,m are given. The minimization
problem
minimize ¢!z subject to F(z) > 0 (2)

where ¢ € R™, is called a semidefinite program (SDP). SDPs are convex optimization prob-
lems and can be solved in polynomial-time with e.g. primal-dual interior-point methods [7, ?].

3 Models of Uncertain Systems
3.1 LFR models
In this paper, we will consider uncertain systems modelled as

Tk

tiar = | A(Ag) [ b(Ay) ] l |

], k=0,1,2,... (3)

where Ay is a (possibly time-varying) uncertainty matrix. We assume that the matrix-valued
functions A(A), b(A), etc, are given by a linear-fractional representation (LFR):

[AA) | b(A) | =[A]b |+ LAT—HA) [ Ra| Ry |, (4)



where A, b, L, R =[R4 Ry], and H are constant matrices, while A € A, where
A={AeA Al <1},
and A is a linear subspace. We denote by U the set
U={[AL)|bA)] [AcaA}

The subspace A, referred to as the structure set in the sequel, defines the structure of the
perturbation, which is otherwise only bounded in norm. Together, the matrices A,b, C. d,
L, R, H, and the subspace A, constitute a linear-fractional representation (LFR) of our
uncertain system.

The above LFR models are not necessarily well-posed over A, meaning that if might
happen that det(l — HA) = 0 for some A € Ay; we return to this issue in §3.1.1.

In the sequel, we denote by B(A) a linear subspace constructed from the subspace A,
referred to as the scaling subspace, as follows:

B(A)={(S,T.G) | SA=AT, GA=—ATG" for every A € A}. (5)

We will give examples of LFR models, and explicit representations of associated sets A and
B(A) shortly. This uncertainty framework includes the case when parameters perturb each
coefficient of the data matrices in a (polynomial or) rational manner. This is thanks to the
representation lemma given below.

Lemma 1 For any rational matriz function M : R* — R"*¢, with no singularities at the
origin, there exist nonnegative integers ry,...,rr, and matrices M € R"*¢, [, ¢ RN,
R e RV*¢, H ¢ RV*N with N = ry + ...+ rp, such that M has the following Linear-
Fractional Representation (LFR): For all § where M is defined,

M(8) = M 4+ LA (I — HA)™' R, where A = diag (8,1,,,...,611,,). (6)

A Linear-Fractional Representation (LFR) is thus a matrix-based way to describe a multi-
variable rational matrix-valued function. It is a generalization, to the multivariable case, of
the well-known state-space representation of transfer functions. A constructive proof of the
above result is given in [?]. The proof is based on a simple idea: first devise LFRs for simple
(e.g., linear) functions, then use combination rules (such as multiplication, addition, etc), to
devise LFRs for arbitrary rational functions.

3.1.1 Well-posedness

The LFRs introduced earlier are not necessarily well-posed over Ay, meaning that if might
happen that det(/ — HA) = 0 for some A € A;. Checking well-posedness is a NP-hard
problem, known in robust control theory as the p analysis problem, that is addressed e.g.,
in [5]. In [5], the authors have proved that if there exist a triple (S, 7T, G) € B(A) such that
S»0,T >0, and
H'"TH+ H'G+G"H < S, (7)

then the LFR is well-posed over Aj.

In this paper we will make the assumption that the LFR is well-posed. It turns out that
this is not a strong assumption in our context, since the conditions we will obtain always
imply the above condition, which in turn guarantees well-posedness.
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3.1.2 Robustness lemma

We will need the following results.

Lemma 2 (unstructured perturbations) Let F = FT, L, R and H be given matrices
of appropriate size. We have

F 4+ LA = HA)Y'R + (LA = HA)YT'R)T =0 for every A, ||A]| < 1

if and only if there exists a scalar T such that

~ T

F L
LT 0

S e

Lemma 3 (structured perturbations) Let F = FT, L, R and H be given matrices of
appropriate size. We have

F+ LA(] — HA)_IR + (LA(] — HA)_IR)T = 0 for every A € Ay
if there exist block-diagonal matrices

S:diag(Sl,...,Sl)7 Si:SZ'TER”X”7
G:diag(le"'le)v GZ'Z_GZTE].:{mxm7

such that

- S = 0. (9)

F L R 71" s ¢ 1[R %
£T 0 0 I Gt —s||lo 11]°°°%

4 LMI Conditions for Ellipsoid Update

In this section, we give the main results on the simulation problem in the general context of
systems with structured uncertainty. For ease of notation, we will drop the time index k on
quantities at time k, and the quantities at time k& + 1 will be denoted with a subscript +.
With this convention, = stands for zj, and =, stands for xj44.

Our aim is to determine a confidence ellipsoid € = E(Py, 1) for the state at the next
time instant z,, given the measurement information y at the current time instant, and
given that = belongs to a given ellipsoid € = F(P,#). To avoid inverting the matrix P, we
introduce the following equivalent representation for &:

E={t+FEz : ||z]2 <1},

where P = EET and E7 is the Cholesky factor of P.



4.1 The case with no uncertainty

Consider first the case when A = A, b = b are perfectly known. We want

Py vy — @y )(wy —q)"

to hold whenever

ry=Ar+b, v=1+Fz |z <1
We get the following robust LMI condition:

[ P, ATFO= 8 AEZ ) henever |12]]; < 1.

(Az+b— 3, + AE2)T 1

Using the robustness lemma (lemma 2), we obtain an equivalent condition: there exists
7 such that

Py Az +b—1, AFE
(A:J?;—I—b—:f;+)T 1—7 0 = 0.
ETAT 0 71

4.2 Robust version

We now seek Py, 24,7 such that

P, Ai+b—i, AE
(Az +b—3)T -7 0 | =0 for every [A b] € Y.
ETAT 0 Tl

To obtain the robust counterpart, we just apply the robustness lemma. We have the LFR

Py A +b—i, AE
(Az+b—iy)T 1—7 0 | =F 4+ LA —HA)T'R+ (LA(I — HA)T'R)T,
ETAT 0 7l
where
Py A +b—3i, AE
F=|(Ai4+b—i)7 1—r 0 |,
ETAT 0 71
L 0 T
L=|0|, R=|Rue+R, | , H=H
0 RuE

We now apply the robustness lemma.

Theorem 1 The ellipsoid

Er ={ty + Epz [z < 1}



is an ellipsoid of confidence for the new state if 4 and P, := E_|_E_|T_ satisfy the LMI

i P, Ai+b—¢, AE L
(At +b—3,)" 1—r 0 0|,
ET AT 0 00| %
i L7 0 0 0
(0 Rui+Ry RuE H]'[ S & 1[0 Rui+R, R\E H
0 0 0o I GT —5 || o 0 0o I |

S =0,
for some block-diagonal matrices

S:diag(Sl,...,Sl)7 Si:SZ'TER”X”7
G:diag(Gl,...,Gl), GZ:_G;TEerXTl

Using the elimination lemma [2|, we may eliminate the variable Z, as follows.
Theorem 2 The ellipsoid
Er ={ty + Epz [z < 1}
is an ellipsoid of confidence for the new state if T and Py := E_|_E_|T_ satisfy the LMI

o f?g [0 RaE H]Tls GHO RAE H] G
- T ” NS
A 0 0 0 0 I G S 0 0 I
167— 7_0] 8 . Rsz+ Ry, RsF H T S G Riz+ Ry, RsF H
- 0 0 I Gt -8 0 0 I\’
| 0 0 0
(10)
for some block-diagonal matrices
S =diag (S,...,5), Si= ST e R (1)
G =diag (G4,...,G)), Gi=—-GI ¢ R,

The minimum-trace ellipsoid is obtained by solving the semidefinite programming problem
minimize Tr Py subject to (10), (11). (12)
At the optimum, we have
Po=[aE L]xt[aE L]
and a corresponding center is given by

T pT A
fp= Ad+b+ | AE L}X*[ BRAS(Rad + Fo) ]

(SH + G)T(RAi' + Rb)

where

v [T 0] _[RaE B[ S G |[RaE H
“lo o0 o 1] |G =s|| o 1]



5 Numerical Implementation

In this section, we discuss the numerical implementation of the solution to problem (12)
using interior-point methods for semidefinite programming (SDP). Numerous algorithms are
available today for SDP; in our experiments we have used the SDPpack package.

In order to work, these methods require that the problem be strictly feasible, and that its
dual (in the SDP sense, see [12]) be also strictly feasible. Primal strict feasibility means that
the feasible set is not “flat” (contained in a hyperplane in the space of decision variables).
Dual strict feasibility means, roughly speaking, that the objective of the primal problem is
bounded below on the (primal) feasible set.

For simplicity, we will reduce our discussion to the case when the matrix H is zero; this
means that the perturbations enter affinely in the state-space matrices. We will also assume
that the affine term R, is zero. Finally, we constrain the matrix variables G in problem (12)
to be zero. The extension of our results to the general case is straightforward.

The reduced problem we examine now takes the form

minimize Tr P, subject to

Py AFE L - A o
| —r—4TRTSRs2  —3TRTSR,E
T AT T pT - A N A " _
EL;X ) ORASRAE g ~ 0, ETRTSR, 4 71— ETRTSRAE > 0,
S = dlag (Sl,. . -751)7 Sz = SZT c Rrixri,
(13)

In the above, we have used the fact that the constraint S > 0 is implied by the above LMIs.

5.1 Strict feasibility of primal problem
We have the following result.

Theorem 3 [f the system is well-posed, and if the matriz { Raz RaFE | is not zero, then
the primal problem (13) is strictly feasible; a strictly feasible primal point is given by

T = 0.5
— ! 51,
e ]

Py = I+[AE L]xt[ 4B L],

where

[aal [l S]]

Remark 1 If the matriz { Riz RuFE } is zero, then the new iterate x4 is independent of
perturbation, and the new ellipsoid of confidence reduces to the singleton { Az + b}.

Remark 2 If each n x r; block L; of L is full rank, and if F is also full rank, then the
optimal Py (and corresponding E ) is full rank.



5.2 Strict feasibility of dual problem
The problem dual to the SDP (13) is

maximize — 2 (T]t'AEZlT2 + TrLZlg) subject to

I Zyy Zis T

Z=| 2L Zy oy | =0, X:[x” ;‘;12
ZIQ;) ZQQ;) Tas T12 22

784 = Ri (E(Xog + Z0) BT + add™ + 2, BT + BagdT) BT, i=1,... L.

=0, w11 = Tr(Xs + Za9),

In the above, the notation 7 refers to the i-th r; x r; block in matrix X, and R; is the i-th
r; X n block in Ry.

Theorem 4 [f, for each v, 1 = 1,...,1, the matriz R;E is full rank, then the dual, problem
is strictly feasible. A strictly feasible dual point is obtained by setting the dual variables X, 7
to be zero, except for the block-diagonal terms:

Xy = 1
Zyy = 1
r11 = 2n

Z8) = Ry(EET +n#s)RT, i=1,...,1.

The next theorem summarizes the sufficient conditions we have obtained to guarantee
that our algorithm behaves numerically well.

Theorem 5 [f the initial ellipsoid is not “flat” (that is, the initial F is full rank), and if for
each 1, the blocks L;, R; are also full rank, then at each step of the simulation algorithm, the
SDP to solve is both primal and dual stricly feasible.

6 Example
Consider a second-order, continuous-time uncertain system
i+ ai(t)y +ax(t)y = as(l),

where the uncertain, time-varying parameters a;, 1 = 1,2 are subject to bounded variation
of given relative amplitude p, precisely:

ai(t) = a™™(1 + pdi(t), i=1,2, t>0,

where —1 < §;(¢) < 1 for every ¢, and a?°™, ¢ = 1,2, is the nominal value of the parameters.
By discretizing this system using a forward-Euler scheme with discretization period h,
we obtain a system of the form (?7), with the following LFR

[A‘b}:[ 1 h

—ha2 —ha1

0
ha2

]:{A\b}—kLAR,



where

1 h
—hale™  —hatom

0 0 732[01 0

0

hagnom ”
2

] ,A = diag (51,52).

10 -1

Figures 6 and 6 compare the responses in output y for A = 0.1, a}°™ = 3, a3°™ =9, for a
time horizon of T' = 50 steps, with 100 Monte-Carlo simulations, for two values of p: p = 0.2
and p = 0.4, respectively.

The first plot (p = 0.2) shows a case when the Monte-Carlo and worst-case analyses
agree on the qualitative behavior of the uncertain system. In the second plot (p = 0.4),
the worst-case analysis appear to predict instability of the system, while the random trials
predict stability. The worst-case analysis seems to be conservative, but the reader should
be aware that the actual worrst-case behavior cannot be accurately predicted, in general, by
taking random samples.

7 Conclusions

In this paper we presented a recursive scheme for computing a minimal size ellipsoid (ellipsoid
of confidence) that is guaranteed to contain the state at time k + 1 of a linear discrete-time
system affected by deterministic uncertainty in all the system matrices, given a previous
ellipsoid of confidence at time k. The ellipsoid of confidence can be recursively computed in
polynomial time via semidefinite programming. We remark that the presented results are
valid on a finite time horizon, while steady-state and convergence issues are currently under
investigation.
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Figure 1: Worst-case and random simulation for a second-order uncertain system (p = 0.2).
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Figure 2: Worst-case and random simulation for a second-order uncertain system (p = 0.4).
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