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Abstract

Given a sample covariance matrix, we exam-
ine the problem of maximizing the variance
explained by a particular linear combination
of the input variables while constraining the
number of nonzero coefficients in this com-
bination. This is known as sparse principal
component analysis and has a wide array of
applications in machine learning and engi-
neering. We formulate a new semidefinite re-
laxation to this problem and derive a greedy
algorithm that computes a full set of good
solutions for all numbers of non zero coeffi-
cients, with complexity O(n3), where n is the
number of variables. We then use the same
relaxation to derive sufficient conditions for
global optimality of a solution, which can be
tested in O(n3). We show on toy examples
and biological data that our algorithm does
provide globally optimal solutions in many
cases.

1. Introduction

Principal component analysis (PCA) is a classic tool
for data analysis, visualization or compression and has
a wide range of applications throughout science and
engineering. Starting from a multivariate data set,
PCA finds linear combinations of the variables called
principal components, corresponding to orthogonal di-
rections maximizing variance in the data. Numerically,
a full PCA involves a singular value decomposition of
the data matrix.
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One of the key shortcomings of PCA is that the factors
are linear combinations of all original variables; that
is, most of factor coefficients (or loadings) are non-
zero. This means that while PCA facilitates model
interpretation by concentrating the information in a
few factors, the factors themselves are still constructed
using all variables, hence are often hard to interpret.

In many applications, the coordinate axes involved in
the factors have a direct physical interpretation. In
financial or biological applications, each axis might
correspond to a specific asset or gene. In problems
such as these, it is natural to seek a trade-off between
the two goals of statistical fidelity (explaining most of
the variance in the data) and interpretability (mak-
ing sure that the factors involve only a few coordinate
axes). Solutions that have only a few nonzero coeffi-
cients in the principal components are usually easier
to interpret. Moreover, in some applications, nonzero
coefficients have a direct cost (e.g., transaction costs in
finance) hence there may be a direct trade-off between
statistical fidelity and practicality. Thus our aim here
is to efficiently derive sparse principal components, i.e,
a set of sparse vectors that explain a maximum amount
of variance. Our belief is that in many applications,
the decrease in statistical fidelity required to obtain
sparse factors is small and relatively benign. In what
follows then, we will focus on the problem of finding
sparse factors which explain a maximum amount of
variance. This can be written:

max
‖z‖≤1

zTΣz − ρCard(z) (1)

in the variable z ∈ R
n, where Σ ∈ Sn is the (symmet-

ric) sample covariance matrix, ρ is a parameter con-
trolling sparsity, and Card(z) denotes the cardinal ("0
norm) of z, the number of non zero coefficients of z.

While PCA is numerically easy (each factor requires
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computing a dominant eigenvector, which can be done
in O(n2)), sparse PCA is a NP-hard combinatorial
problem—Moghaddam et al. (2006a) show that the
subset selection problem for ordinary least squares,
which is NP-hard (Natarajan, 1995), can be reduced to
sparse PCA. Sometimes ad hoc “rotation” techniques
are used to post-process the results from PCA and
find interpretable directions underlying a particular
subspace (see Jolliffe (1995)). Another simple solu-
tion is to threshold the loadings (Cadima & Jolliffe,
1995). Kolda and O’Leary (2000) use integer loadings.
A more systematic approach to the problem arose in
recent years, with various researchers proposing non-
convex algorithms (e.g., SCoTLASS by Jolliffe et al.
(2003)). The SPCA algorithm, which is based on the
representation of PCA as a regression-type optimiza-
tion problem (Zou et al., 2004), allows the application
of the LASSO (Tibshirani, 1996), a penalization tech-
nique based on the "1 norm. The methods above are all
either highly suboptimal (thresholding) or nonconvex
(SPCA, ...), hence have unreliable performance.

Recently also, d’Aspremont et al. (2004) derived a
semidefinite relaxation for problem (1) which had a
complexity of O(n4

√
log n). Finally, Moghaddam et al.

(2006b) used greedy search and branch-and-bound
methods to solve small instances of problem (1) ex-
actly and get good solutions for larger ones. Each step
of the greedy algorithm has complexity O(n3), leading
to a complexity of O(n4) for the full path.

Our contribution here is twofold. We first formulate a
new semidefinite relaxation to problem (1) and use it
to derive a greedy algorithm for computing a full set
of good solutions (one for each sparsity between 1 and
n) at a total numerical cost of O(n3). We then derive
tractable sufficient conditions for a vector z to be a
global optimum of (1). This means in practice that,
given a vector z with support I, we can test if z is a
globally optimal solution to problem (1) by computing
a minimum eigenvalue problem of size (2m− 1) where
m is the cardinality of z. In particular, we can take any
sparsity pattern candidate from any algorithm and test
its optimality. Whenever our sufficient condition is ful-
filled (which happens somewhat frequently in practice,
as shown in Section 7), we have a globally optimal so-
lution to the NP-hard problem in (1).

In Sections 2 to 4, we formulate a convex relaxation
for the sparse PCA problem and use it in Section 5 to
write an efficient algorithm for computing a full set of
good solutions to problem (1). In Section 6, we derive
tractable, sufficient conditions for global optimality of
these solutions. Finally, in Section 7, we test the nu-
merical performance of these results.

Notation For a vector z ∈ R, we let ‖z‖1 =
∑n

i=1 |zi| and ‖z‖ =
(
∑n

i=1 z2
i

)1/2
, Card(z) is the

cardinality of z, i.e. the number of nonzero coef-
ficients of z, while the support I of z is the set
{i : zi $= 0} and Ic its complement. For β ∈ R,
we write β+ = max{β, 0} and for X ∈ Sn (the set of
symmetric matrix of size n × n) with eigenvalues λi,
Tr(X)+ =

∑n
i=1 max{λi, 0}. The vector of all ones in

denoted 1.

2. Sparse PCA

Let Σ ∈ Sn be a symmetric matrix. We consider the
following sparse PCA problem:

φ(ρ) = max
‖z‖≤1

zTΣz − ρCard(z) (2)

in the variable z ∈ R
n where ρ > 0 is a parameter

controlling sparsity. We assume without loss of gener-
ality that Σ ∈ Sn is positive semidefinite and that the
n variables are ordered by decreasing marginal vari-
ances, i.e., that Σ11 ≥ · · · ≥ Σnn. We also assume
that we are given a square root A of the matrix Σ
such that Σ = AT A, where A ∈ R

n×n and we denote
by a1, . . . , an the columns of A. Note that the problem
and our algorithms are invariant by permutations of Σ
and by the choice of square root A.

Let us first suppose that ρ ≥ Σ11. Since zTΣz ≤
Σ11‖z‖2

1 and ‖z‖2
1 ≤ ‖z‖2

2 Card(z), we always have:

φ(ρ) = max‖z‖≤1 zTΣz − ρCard(z)
≤ (Σ11 − ρ)Card(z) ≤ 0,

hence the optimal solution to (2) when ρ ≥ Σ11 is
z = 0.

From now on, we assume ρ ≤ Σ11 in which case the
inequality ‖z‖ ≤ 1 is tight. We can represent the spar-
sity pattern of a vector z, by a vector u ∈ {0, 1}n and
rewrite (2) in the equivalent form:

φ(ρ) = max
u∈{0,1}n

λmax(diag(u)Σdiag(u)) − ρ1T u

= max
u∈{0,1}n

λmax(diag(u)AT Adiag(u)) − ρ1T u

= max
u∈{0,1}n

λmax(Adiag(u)AT ) − ρ1T u,

using the fact that diag(u)2 = diag(u) for all variables
u ∈ {0, 1}n. We then have:

φ(ρ) = max
u∈{0,1}n

λmax(Adiag(u)AT ) − ρ1T u

= max
‖x‖=1

max
u∈{0,1}n

xT Adiag(u)AT x − ρ1T u

= max
‖x‖=1

max
u∈{0,1}n

n
∑

i=1

ui((a
T
i x)2 − ρ),
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hence we finally get, after maximizing in u:

φ(ρ) = max
‖x‖=1

n
∑

i=1

((aT
i x)2 − ρ)+ (3)

which is a nonconvex problem in the variable x ∈ R
n.

We observe that if Σii = aT
i ai < ρ, we must have

(aT
i x)2 ≤ ‖ai‖2‖x‖2 < ρ hence variable i will never be

part of the optimal subset and we can remove it.

3. Semidefinite Relaxation

In problem (3), the variable x appears solely through
X = xxT , and in this context, it is classical to refor-
mulate the problem using X only. A set of necessary
and sufficient conditions for the existence of x of unit
norm so that X = xxT is Tr(X) = 1, X ( 0 and
Rank(X) = 1. We can thus rewrite (3) as:

φ(ρ) = max.
∑n

i=1(a
T
i Xai − ρ)+

s.t. Tr(X) = 1, Rank(X) = 1
X ( 0.

Unfortunately, the function we are maximizing X )→
(aT

i Xai − ρ)+ is still convex in X and not concave.
However, we can now show that on the set of positive
semidefinite rank one matrices of unit trace, it is equal
to a concave function of X.

We let X1/2 denote the symmetric positive square root
(with nonnegative eigenvalues) of a symmetric positive
semi-definite matrix X. In particular, if X = xxT with
‖x‖ = 1, then X1/2 = X = xxT , then for all β ∈ R,
βxxT has one eigenvalue equal to β and n−1 equal to
0, which implies Tr(βxxT )+ = β+. We thus get:

(aT
i Xai − ρ)+ = Tr[(aT

i xxT ai − ρ)xxT ]+

= Tr(x(xT aia
T
i x − ρ)xT )+

= Tr(X1/2aia
T
i X1/2 − ρX)+

For any symmetric matrix B, the function X )→
Tr(X1/2BX1/2)+ is concave on the set of symmetric
positive semidefinite matrices, because:

Tr(X1/2BX1/2)+ = max
{0&P&X}

Tr(PB)

= min
{Y 'B, Y '0}

Tr(Y X),

where this last expression is a concave function of X
as a pointwise minimum of affine functions of X. We
can now relax problem (3) into a convex optimization
problem by simply dropping the rank constraint, to
get:

ψ(ρ) = max.
∑n

i=1 Tr(X1/2aia
T
i X1/2 − ρX)+

s.t. Tr(X) = 1, X ( 0,
(4)

which is a (convex) program in X ∈ Sn. In fact, using
the above representation of Tr(X1/2BX1/2)+, prob-
lem (4) can be written as a semidefinite program:

ψ(ρ) = max.
∑n

i=1 Tr(PiBi)
s.t. Tr(X) = 1, X ( 0, X ( Pi ( 0,

in the variables X ∈ Sn, Pi ∈ Sn. Note that we always
have ψ(ρ) ≥ φ(ρ) and when the solution to the above
semidefinite program has rank one, ψ(ρ) = φ(ρ) and
the relaxation (4) is tight.

4. Low Rank Optimization

The semidefinite relaxation in (4) can be solved ef-
ficiently using SDP solvers such as SDPT3 by Toh
et al. (1999) when n is very small: indeed, the com-
plexity of solving (4) without exploiting structure is
O(n9). For larger problems, even storing X and Pi

quickly becomes impossible and we need to find a more
economical representation. Here, we assume that the
matrix X has a low rank representation X = UUT

with U ∈ R
n×m. Then X1/2 = U(UT U)−1/2UT

and we have for all symmetric matrices B,
X1/2BX1/2 = U(UT U)−1/2UT BUU(UT U)−1/2. The
matrix U(UT U)−1/2 has orthogonal columns, thus the
positive eigenvalues of X1/2BX1/2 are exactly the pos-
itive eigenvalues of UT BU . In our situation, the ma-
trix B has at most one positive eigenvalues, and thus
we can rewrite problem (4) as:

ψm(ρ) = max.
∑n

i=1 λmax(UT (aia
T
i − ρI)U)+

s.t. Tr(UT U) = 1,
(5)

in the variable U ∈ R
n×m. Although we have turned a

convex relaxation in X into a nonconvex relaxation in
U , Burer and Monteiro (2003) show that if m is strictly
larger than the rank of the optimal solution to (4), then
problem (5) has a unique, rank-deficient, local mini-
mum U! and the corresponding matrix X = U!U!T is
a global minimum of the original problem (4). Using
this result, in the rest of this paper, we will always
optimize problems with very low rank and embed the
solution in a higher rank problem (or SDP) to test its
optimality and the relaxation’s tightness.

5. Greedy Solutions

In this section, we focus on finding a good solution to
problem (2) using greedy methods. We first present
very simple solutions with complexity O(n log n) and
O(n2). We then recall a simple greedy algorithm
with complexity O(n4), and show how an approximate
greedy algorithm can be used to compute a full set
of (approximate) solutions for problem (2), with total
complexity O(n3).
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5.1. Sorting and Thresholding

The simplest ranking algorithm is to sort the diagonal
of the matrix Σ and rank the variables accordingly.
This works intuitively because the diagonal is a rough
proxy for the eigenvalues: the Schur-Horn theorem
states that the diagonal of a matrix majorizes its eigen-
values. Sorting the diagonal costs O(n log n). Another
quick solution is to compute the dominant eigenvector
of Σ and select a sparse vector by thresholding to zero
the coefficients whose magnitude is smaller than a cer-
tain level. This can be done with cost O(n2).

5.2. Full greedy solution

Following Moghaddam et al. (2006b), starting from an
initial solution of cardinality one at ρ = Σ11, we can
update an increasing sequence of index sets Ik ⊆ [1, n],
scanning all the remaining variables to find the index
with maximum variance contribution. The algorithm
works as follows.

• Input: Σ ∈ R
n×n

• Algorithm:

1. Preprocessing. Sort variables by decreasing
diagonal elements and permute elements of Σ
accordingly. Compute the Cholesky decom-
position Σ = AT A.

2. Initialization: I1 = {1}, x1 = a1/‖a1‖.
3. Compute

ik = argmax
i/∈Ik

λmax





∑

i∈Ik∪{i}

aia
T
i





4. Set Ik+1 = Ik ∪ {ik} and compute xk+1 as
the dominant eigenvector of

∑

i∈Ik+1
aia

T
i .

5. Set k = k + 1. If k < n go back to step 3.

• Output: sparsity patterns Ik.

By convexity of λmax we have:

λmax





∑

i∈Ik∪{i}

aia
T
i



 ≥ λmax

(

∑

i∈Ik

aia
T
i

)

+ (xT
k ai)

2

(6)
which means that the variance is increasing with k. At
every step, Ik represents the set of nonzero elements
(or sparsity pattern) of the current point and we can
define zk as the solution to (2) given Ik, which is:

zk = argmax
{zIc

k
=0, ‖z‖=1}

zTΣz − ρk,

which means that zk is formed by padding zeros to the
dominant eigenvector of the submatrix ΣIk,Ik

.

5.3. Approximate greedy solution

Computing n−k eigenvalues at each iteration is costly.
We can use (6) as a lower bound on those eigenvalues
which does not require finding n − k eigenvalues at
each iteration, to derive the following algorithm:

• Input: Σ ∈ R
n×n

• Algorithm:

1. Preprocessing. Sort variables by decreasing
diagonal elements and permute elements of Σ
accordingly. Compute the Cholesky decom-
position Σ = AT A.

2. Initialization: I1 = {1}, x1 = a1/‖a1‖.
3. Compute ik = argmaxi/∈Ik

(xT
k ai)2

4. Set Ik+1 = Ik ∪ {ik} and compute xk+1 as
the dominant eigenvector of

∑

i∈Ik+1
aia

T
i .

5. Set k = k + 1. If k < n go back to step 3.

• Output: sparsity patterns Ik.

5.4. Computational Complexity

The complexity of computing a greedy regularization
path using the classic greedy algorithm in Section 5.2
is O(n4) (at each step k, it computes (n−k) maximum
eigenvalue of matrices with size k). The approximate
algorithm in Section 5.3 computes a full path in O(n3):
the first Cholesky decomposition is O(n3), while the
complexity of the k-th iteration is O(k2) for the maxi-
mum eigenvalue problem and O(n2) for computing all
products (xT aj).

Also, when the matrix Σ is directly formed as a Gram
matrix AT A with A ∈ R

p×n where p < n, we can
use A as the square root of Σ and the complexity of
getting the path up to p non zero elements is then
O(p3 + p2n) (O(p3) for the eigenvalue problems and
O(p2n) for computing the vector products).

5.5. Interpretation as a Regularization Path

Here, we fix m = 1, so that X = UUT = xxT has rank
one and problem (5) is equivalent to (3):

φ(ρ) = max
‖x‖=1

n
∑

i=1

((aT
i x)2 − ρ)+ (7)

Given ρ > 0 and x such that (aT
i x)2 $= ρ for all i, then

in a neighborhood of x, the function
∑n

i=1((a
T
i x)2 −

ρ)+ is equal to xT
(
∑

i∈I(aia
T
i − ρI)

)

x, where I is the
set of indices such that (aT

i x)2 > ρ. Thus x is a locally
optimal solution only if x is the dominant eigenvector
of the matrix

∑

i∈I aia
T
i .
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Such an eigenvector fulfills the condition (aT
i x)2 > ρ

for i ∈ I and (aT
i x)2 < ρ for i /∈ I, if and only if

max
i/∈I

(aT
i x)2 < ρ< min

i∈I
(aT

i x)2.

In Section 5.3, given the sparsity pattern Ik at the
k-th iteration, the next index is chosen so that ik =
argmaxi/∈Ik

(xT
k ai)2, this is equivalent to finding the

largest ρ for which the sparsity pattern is still opti-
mal, and hence the algorithm in Section 5.3 implicitly
builds a path of locally optimal solutions to problem
(7). In Section 6.1, we derive sufficient conditions for
the global optimality of such solutions.

6. Tightness

In this section, we derive necessary and sufficient con-
ditions to test the optimality of the solutions to the
relaxations detailed in Sections 4 and 5 and the tight-
ness of the relaxation in (4).

6.1. Semidefinite Optimality Conditions

Here, we first derive the Karush-Kuhn-Tucker (KKT)
conditions for problem (4) and study the particular
case where we are given a rank one solution X = xxT

and need to test if for optimality. Let us start by
deriving the dual to problem (4) which is equivalent
to:

max.
∑n

i=1 Tr(PiBi)
s.t. 0 - Pi - X

Tr(X) = 1, X ( 0.

This is a semidefinite program in the variables X ∈
Sn, Pi ∈ Sn, with Bi = aia

T
i − ρI, i = 1, . . . , n. Its

dual can be written as:

min. λmax (
∑n

i=1 Yi)
s.t. Yi ( Bi, Yi ( 0, i = 1, . . . , n.

in the variables Yi ∈ Sn. The KKT conditions for this
pair of SDP problems are written:







(
∑n

i=1 Yi) X = λmax (
∑n

i=1 Yi) X
X − Pi − Qi = 0, PiBi = PiYi, YiQi = 0
Yi ( Bi, Yi, X, Pi, Qi ( 0.

(8)

Suppose now that we are given a sparsity pattern I
(obtained using the results detailed in the previous
section for example), and that X is a rank one matrix
with X = xxT . In this case, the constraint X − Pi =
Qi ( 0 implies that Pi = αixxT with αi ∈ [0, 1] and
we can further simplify the KKT conditions to get:







(
∑n

i=1 Yi) x = λmax (
∑n

i=1 Yi) x
xT Yix = ((aT

i x)2 − ρ)+
Yi ( Bi, Yi ( 0.

(9)

In what follows, we show that when (I, ρ) satisfy a
basic consistency condition, we can find an explicit
expression for the dual variables Yi corresponding to a
rank one solution X = xxT .

6.2. Optimality of Low Rank Solutions

In this section we derive sufficient and necessary opti-
mality conditions for rank one solutions to the convex
problem (4). If we can prove that a rank one solution
is globally optimal, we also prove that relaxation (4) is
tight, hence we get a globally optimal solution to the
original problem (2).

Again, for a given sparsity pattern I, we let x be the
largest eigenvector of

∑

i∈I aia
T
i . We must first iden-

tify a set of parameters ρ consistent with the pattern
I and the vector x, i.e., such that x is locally optimal
for the rank one problem, which means:

max
i/∈I

(aT
i x)2 ≤ ρ ≤ min

i∈I
(aT

i x)2. (10)

If maxi/∈I(a
T
i x)2 > mini∈I(aT

i x)2, no ρ can be found to
match the pattern I. In what follows, we assume that
the set of ρ satisfying condition (10) has nonempty in-
terior and derive additional necessary optimality con-
ditions for such pairs (I, ρ) to be globally optimal.

Let us recall that, as in Section 4, the matrix xxT

is optimal for problem (4) if and only if the rank
two problem (with m = 2) has a local minimum at
U = [x, 0]. When ρ satisfies condition (10) strictly, in
a small neighborhood of U = [x, 0], the function ψm(ρ)
in (5) can be written as an unconstrained maximiza-
tion as ψm(ρ) = max

U∈R
n×m f(U) with:

f(U) =
∑

i∈I

λmax

(

UT BiU

TrUT U

)

+
∑

i∈Ic

λmax

(

UT BiU

TrUT U

)

+

where Bi = aia
T
i −ρI. Since f is twice differentiable at

U = [x, 0], a necessary condition for local optimality
is that its gradient be zero and its Hessian be negative
semidefinite. The gradient of f(U) at [x, 0] is equal to
[2Bx−2(xT Bx)x, 0] where B =

∑

i∈I Bi. Since x is an
eigenvector of B corresponding to its largest eigenvalue
σ =

∑

i∈I((a
T
i x)2 − ρ), this gradient is always zero at

[x, 0]. Furthermore, a second order expansion of f at
the point [x, 0] can be written:

f(x + dx, dy) − f(x, 0) = 2dxT (B − σI)dx

+dyT
(

∑

i∈I
BixxT Bi

xT Bix
− σI

)

dy +
∑

i∈Ic(dyT Bidy)+

and a necessary condition for optimality is then:

min
{Zi'Bi,Zi'0}

λmax

(

∑

i∈I

BixxT Bi

xT Bix
+

∑

i∈Ic

Yi

)

≤ σ

(11)
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This necessary condition is also sufficient, because the
criterion is equivalent to satisfying the KKT conditions
in (9), having set the dual variables:

Yi =
BixxT Bi

xT Bix
, i ∈ I

and primal variable X = xxT . Indeed, we have Yix =
Bix and

aT
i (Yi − Bi)ai = ρ aT

i ai−ρ
(aT

i x)2−ρ
(aT

i ai − (aT
i x)2)

≥ 0.

Using a Schur complement, when Yi = 0 for i ∈ Ic,
condition (11) can be written:

(

diag(xT Bix) (Bix)T
i∈I

(Bix)i∈I σI

)

( 0

where diag(xT Bix) is the matrix with diagonal ele-
ments xT Bix, when i ∈ I. This is a linear matrix
inequality in the single variable ρ:

(

diag((xT ai)2 − ρ) (aia
T
i x − ρx)T

i∈I
(aia

T
i x − ρx)i∈I

∑

i((x
T ai)2 − ρ)I

)

( 0

which means that the set of admissible ρ is a convex
set and hence an interval.

6.3. Efficient Optimality Conditions

We let m = Card(I). When m . n, we can re-
duce the complexity of finding this interval by pro-
jecting the condition on the space spanned by the
columns of A indexed by I. We denote by Ã the sub-
matrix of A obtained by keeping only columns with
index in I. We let R be the Cholesky factor of ÃT Ã,
so ÃT Ã = RRT . With x defined as the dominant
eigenvector of

∑n
i=1(aia

T
i − ρI), we have x = Ãv,

with vT ÃT Ãv = 1 and the corresponding eigenvalue
σ = vT ÃT ÃÃT Ãv. We let D be the diagonal matrix
with diagonal elements vT ÃT Ãei = aT

i x. By premul-
tiplying and postmultiplying by Ã, (11) leads to:

ÃT Ã(D−ρv1T )(D2−ρI)−1(D−ρ1vT )ÃT Ã−σÃT Ã - 0

which, by Schur’s complement lemma, becomes:

(

D2 DRT

RD σI

)

( ρ
(

I 1vT RT

Rv1T mI

)

By block-diagonalizing the matrix on the right-hand
side, using the notation Π = I − 11T /m, we get:

(

ΠD2Π ZT

Z σI

)

( ρ
(

Π 0
0 mI

)

with Z = RD − σ
mRv1T which satisfies Z1 = 0. We

let P ∈ R
m×m−1 be an orthonormal basis of vectors

orthogonal to the constant vector 1, so that PPT +
11T /m = I. Condition (11) finally implies:

(

PT D2P PT ZT /
√

m
ZP/

√
m σ/mI

)

( ρI

which leads to:

ρ ≤ λmin

(

PT D2P PT ZT /
√

m
ZP/

√
m σ/mI

)

which is a minimum eigenvalue problem of dimension
(2m−1). Good candidates for Yi when i ∈ Ic can then
be found by solving:

minimize TrYi

subject to Yi ( Bi, xT Yix = 0, Yi ( 0,

which has an explicit solution given by:

Yi = ρ
(aT

i ai − ρ)
(ρ− (aT

i x)2)

(I − xxT )aia
T
i (I − xxT )

‖(I − xxT )ai‖2
. (12)

The total cost of testing the condition is dominated
by the Cholesky and QR decompositions and is then
O(m3), but when done sequentially in the greedy path
algorithms of Section 5, efficient Cholesky updates
may be used to obtain them in O(m2) for each m,
leading to total complexity of O(n3) for checking op-
timality for every point on a path. We can summarize
the results of this section as follows.

Proposition 1 Given a sparsity pattern I, setting x
to be the largest eigenvector of

∑

i∈I aia
T
i . If there is

a parameter ρI such that:

max
i/∈I

(aT
i x)2 ≤ ρI ≤ min

i∈I
(aT

i x)2. (13)

and
(

diag((xT ai)2) − ρII (aia
T
i x)T

i∈I − ρI1xT

(aia
T
i x)i∈I − ρIx1T

∑

i(x
T ai)2I − ρII

)

( 0

(14)
with

λmax

(

∑

i∈I

BixxT Bi

xT Bix
+

∑

i∈Ic

Yi

)

≤ σ

with Yi given in (12), then the vector z such that:

z = argmax
{zIc=0, ‖z‖=1}

zTΣz,

which is formed by padding zeros to the dominant
eigenvector of the submatrix ΣI,I is a global solution
to problem (2) for ρ = ρI . When Card(I) << n, we
can replace condition (14) by a minimum eigenvalue
problem of size (2m − 1).

Note that (13) corresponds to local optimality condi-
tions for the rank-one problem while (14) corresponds
to global optimality of such locally optimal solutions.
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6.4. Solution Improvements & Randomization

When these conditions are not satisfied, we can use
the low-rank algorithms of Section 4. Also, El Ghaoui
(2006) shows that we can get bounds on the subopti-
mality of the solution by randomization.

7. Numerical Results

In this section, we first compare the various methods
detailed here on artificial examples, then test their per-
formance on a biological data set.

7.1. Artificial Data

We generate a matrix U of size 150 with uniformly
distributed coefficients in [0, 1]. We let v ∈ R

150 be a
sparse vector with:

vi =







1 if i ≤ 50
1/(i − 50) if 50 < i ≤ 100
0 otherwise

We form a test matrix Σ = UT U + σvvT , where σ
is the signal-to-noise ratio. We first compare the rel-
ative performance of the algorithms in Section 5 at
identifying the correct sparsity pattern in v given the
matrix Σ. The resulting ROC curves are plotted in
figure 1 for σ = 2. On this example, the comput-
ing time for the approximate greedy algorithm in Sec-
tion 5.3 was 3 seconds versus 37 seconds for the full
greedy solution in Section 5.2. Both algorithms pro-
duce the same answer. We can also see that both
sorting and thresholding ROC curves are dominated
by the greedy algorithms. We then plot the variance
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Figure 1. ROC curves for sorting, thresholding, fully

greedy solutions (Section 5.2) and approximate greedy so-

lutions (Section 5.3) for σ = 2.

versus cardinality tradeoff curves for various values of

the signal-to-noise ratio. In figure 2, dashed lines cor-
respond to potentially suboptimal points while bold
lines correspond to provably optimal ones. We notice
that the proportion of optimal points increases with
the signal-to-noise ratio. Next, we use the DSPCA al-
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Figure 2. Variance versus cardinality tradeoff curves for

σ = 10 (bottom), σ = 50 and σ = 100 (top). Optimal

points are in bold.

gorithm of d’Aspremont et al. (2004) to find optimal
solutions where the greedy codes have failed to ob-
tain a provably globally optimal solutions. In figure 3
we plot the variance versus cardinality tradeoff curve
for σ = 10. The dashed line corresponds to subop-
timal points while bold points correspond to optimal
ones, both computed using the approximate greedy al-
gorithm in Section 5.3. The circles correspond to addi-
tional globally optimal points obtained using DSPCA.
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Figure 3. Variance versus cardinality tradeoff curve for σ =

10. Greedy optimal points are in bold, while additional

DSPCA optimal points are plotted as circles.
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7.2. Biological Data

We run the algorithm of Section 5.3 on two gene ex-
pression data sets, one on Colon cancer from Alon
et al. (1999), the other on Lymphoma from Alizadeh
et al. (2000). We plot the variance versus cardinal-
ity tradeoff curve in figure 4. Again, the dashed line
corresponds to suboptimal points while bold lines cor-
respond to optimal ones. In both cases, we consider
the 500 genes with largest variance. In Table 1, we
also compare the 20 most important genes selected by
the second sparse PCA factor on the colon cancer data
set, with the top 10 genes selected by the RankGene
software by (Su et al., 2003). We observe that 6 genes
(out of an original 4027 genes) were both in the top 20
sparse PCA genes and in the top 10 Rankgene genes.

Rank Rankgene GAN Description
3 8.6 J02854 Myosin regul.

6 18.9 T92451 Tropomyosin

7 31.5 T60155 Actin

8 25.1 H43887 Complement

fact. D prec.

10 2.1 M63391 Human desmin

12 32.3 T47377 S-100P Prot.

Table 1. 6 genes (out of 4027) that were both in the top 20

sparse PCA genes and in the top 10 Rankgene genes.
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Figure 4. Variance versus cardinality tradeoff curve for two

gene expression data sets, lymphoma (top) and colon can-

cer (bottom). Optimal points are in bold.
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