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Why avoid communication? (1/3)

Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between

— levels of a memory hierarchy (sequential case)
— processors over a network (parallel case).
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Why avoid communication? (2/3)

* Running time of an algorithm is sum of 3 terms:
— #flops * time_per_flop
— # words moved / bandwidth

" communication
— # messages * latency

* Time_per_flop << 1/ bandwidth << latency
e Gaps growing exponentially with time [FOSC]

Annual improvements
Time_per_flop Bandwidth Latency
Network 26% 15%
59%
DRAM 23% 5%

e Avoid communication to save time



Why Minimize Communication? (3/3)
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Why Minimize Communication? (3/3)

Minimize communication to save energy
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Goals

* Redesign algorithms to avoid communication
e Between all memory hierarchy levels
e [1 < L2 <> DRAM <= network, etc
e Attain lower bounds if possible
e Current algorithms often far from lower bounds
e Large speedups and energy savings possible



President Obama cites Communication-Avoiding Algorithms in
the FY 2012 Department of Energy Budget Request to Congress:

“New Algorithm Improves Performance and Accuracy on Extreme-Scale
Computing Systems. On modern computer architectures, communication
between processors takes longer than the performance of a floating
point arithmetic operation by a given processor. ASCR researchers have
developed a new method, derived from commonly used linear algebra
methods, to minimize communications between processors and the
memory hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been implemented in the
TRILINOS framewollk, a highly-regarded suite of software, which provides
functionality for regearchers around the world to solve large scale,
complex multi-physjcs problems.”

FY 2010 Congressional Buidget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD) Research (ASCR), pages 65-67.
“Tall-Skinny” QR (Grigori, Hoemmen, Langou, JD)




Outline

e Survey state of the art of CA (Comm-Avoiding)
algorithms

— CA O(n3) 2.5D Matmul
— CA Strassen Matmul

* Beyond linear algebra
— Extending lower bounds to any algorithm with arrays
— Communication-optimal N-body algorithm

* CA-Krylov methods
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Summary of CA Linear Algebra

* “Direct” Linear Algebra

 Lower bounds on communication for linear algebra
problems like Ax=Db, least squares, Ax = Ax, SVD, etc

* Not attained by algorithms in standard libraries

* New algorithms that attain these lower bounds

* Being added to libraries: Sca/LAPACK, PLASMA,
MAGMA

 Large speed-ups possible
e Autotuning to find optimal implementation

* Ditto for “Iterative” Linear Algebra



Lower bound for all “n3-like” linear algebra
* Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M1/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul



Lower bound for all “n3-like” linear algebra
* Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M1/2)

#fmessages_sent 2 #twords_moved / largest_message_size

Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg AX)

— Dense and sparse matrices (where #flops << n3)
— Sequential and parallel algorithms
— Some graph-theoretic algorithms (eg Floyd-Warshall)



Lower bound for all “n3-like” linear algebra
* Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M1/2)

#messages_sent (per processor) = Q(#flops (per processor) / M3/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg AX)

SIAM SIAG/Linear Algebra Prize, 2012
Ballard, D., Holtz, Schwartz



Can we attain these lower bounds?

Do conventional dense algorithms as implemented
in LAPACK and ScaLAPACK attain these bounds?

— Often not
If not, are there other algorithms that do?

— Yes, for much of dense linear algebra

— New algorithms, with new numerical properties,
new ways to encode answers, new data structures

— Not just loop transformations (need those too!)
Only a few sparse algorithms so far
Lots of work in progress



Summary of dense parallel algorithms
attaining communication lower bounds

Assume nxn matrices on P processors

Minimum Memory per processor = M = O(n?/ P)
Recall lower bounds:

#words_moved = Q((n3/P) /M¥2) = Q(n2/ PV2)
#messages = Q((n3/P) /M32) = Q(PY2)
Does ScalLAPACK attain these bounds?

For #words_moved: mostly, except nonsym. Eigenproblem
For #messages: asymptotically worse, except Cholesky

New algorithms attain all bounds, up to polylog(P) factors

Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD

Can we do Better?



Can we do better?

 Aren’t we already optimal?

 Why assume M = O(n?/p), i.e. minimal?
— Lower bound still true (and smaller) if M larger
— Can we attain it?



Outline

e Survey state of the art of CA (Comm-Avoiding)
algorithms

— CA O(n3) 2.5D Matmul
— CA Strassen Matmul
* Beyond linear algebra
— Extending lower bounds to any algorithm with arrays
— Communication-optimal N-body algorithm

* CA-Krylov methods



SUMMA- n x n matmul on P/2x P1/2 grid

(nearly) optimal using minimum memory M=0(n?/P)

<— Brow

C(ij)

k j /B(kj)
e
i ZC\\ ‘>B=
yd
A(i,k) /
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Acol

Using more than the minimum memory

* What if matrix small enough to fit c>1 copies, so M = cn?/P ?
— #twords_moved = Q( #flops / M¥2) = Q( n2/ ( cV/2P1/2))

— #messages

— Q( #ﬂOpS/ M 3/2 ) — Q( pl/2 /C3/2)

e (Can we attain new lower bound?

19



2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c > 1
* Processors form (P/c)¥2 x (P/c)¥? x ¢ grid
(P/c)1/?
Sl

Q\c,\ _
\ ‘ Example: P= 32, c=2
c -




2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c > 1
* Processors form (P/c)¥2 x (P/c)¥? x ¢ grid

J

Initially P(i,j,0) owns A(i,j) and B(i,j)
K each of size n(c/P)Y/? x n(c/P)/?

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of Z_ A(i,m)*B(m,j)
(3) Sum-reduce partial sums Z . A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)



2.5D Matmul on BG/P, 16K nodes / 64K cores

Matrix multiplication on 16,384 nodes of BG/P

100 I I
[ 2.5D MM s
2D MM

80 [ 2.7X faster ]

60 — Using c=16 matrix copies

40 b

Percentage of machine peak

12X faster
o - :
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2.5D Matmul on BG/P, 16K nodes / 64K cores

c = 16 copies
Matrix multiplication on 16,384 nodes of BG/P
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Distinguished Paper Award, EuroPar’11 (Solomonik, D.)
SC’11 paper by Solomonik, Bhatele, D.



Perfect Strong Scaling —in Time and Energy

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?
Increase P by a factor of c =» total memory increases by a factor of c
Notation for timing model:
— V1, By, a; = secs per flop, per word_moved, per message of size m
T(cP) = n3/(cP) [ yr+ Br/M¥2 + a/(mM1/2) ]
=T(P)/c
Notation for energy model:
— Ve, Be, a¢ = joules for same operations
— O = joules per word of memory used per sec
— & = joules per sec for leakage, etc.
E(cP) = cP { n3/(cP) [ v+ Be/MY2 + o/ (mMY/2) | + §.MT(cP) + €.T(cP) }
= E(P)
Perfect scaling extends to n-body, Strassen, ...



Ongoing Work

e Lots more work on

— Algorithms:
« LDL', QR with pivoting, other pivoting schemes, eigenproblems, ...
* All-pairs-shortest-path, ...
* Both 2D (c=1) and 2.5D (c>1)

— Platforms:
* Multicore, cluster, GPU, cloud, heterogeneous, low-energy, ...

— Software:
* Integration into Sca/LAPACK, PLASMA, MAGMA, ...

* Integration into applications (on IBM BG/Q)
— Qbox (with LLNL, IBM): molecular dynamics
— CTF (with ANL): symmetric tensor contractions
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Communication Lower Bounds for
Strassen-like matmul algorithms

Classical Strassen’s Strassen-like
O(n3) matmul: O(n'87) matmul: O(n“) matmul:
#words _moved = #words _moved = #words _moved =
Q (M(n/M¥2)3/P) | | Q (M(n/MY2)'87/P) | | Q (M(n/M¥/2)*/P)

Proof: graph expansion (different from classical matmu
— Strassen-like: DAG must be “regular” and connected

Extends up to M = n2 / p2/®
Best Paper Prize (SPAA’11), Ballard, D., Holtz, Schwartz
to appear in JACM

Is the lower bound attainable?
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Strong Scaling of Strassen and other Matmuls
Franklin (Cray XT4) n = 94080
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Recall optimal sequential Matmul

Naive code
fori=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

“Blocked” code
foril =1:b:n, forjl1=1:b:n, forkl=1:b:n
fori2 =0:b-1, forj2 =0:b-1, for k2 =0:b-1"
i=i1+i2, j=j1+j2, k=kl+k2 - b x b matmul
C(i,j)+=A(i,k)*B(k,j) i

Thm: Picking b = MY/2 attains lower bound:
#words_moved = Q(n3/M*/2)
Where does 1/2 come from?



New Thm applied to Matmul
for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)

Record array indices in matrix A

i j k
1 0 1)

A =10 1 1

1 1 0

A
B
C

Solve LP for x = [xi,xj,xk]": max1'™x s.t. Ax<1
—Result: x=1[1/2,1/2,1/2]",1'x=3/2 =

Thm: #words moved = Q(n3/M51)= Q(n3/M1/2)
Attained by block sizes M, M* Mk = M1/2 \M1/2 \M1/2



New Thm applied to Direct N-Body

e fori=1:n, for j=1:n, F(i) += force( P(i) , P(j) )

* Record array indices in matrix A
i J

1 0) F
A= |1 0 P(i)
L0 1) P()

* Solve LP for x = [xi,xj]": max1'x s.t.Ax<1
—Result: x=[1,1],1'x =2 =5

e Thm: #words_moved = Q(n2/M>1)= Q(n%/M1)
Attained by block sizes M¥ MY = M1, M?!



N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor
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New Thm applied to Random Code

foril=1:n, fori2=1:n, ..., fori6=1:n
A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))
A5(i2,i6) += func2(A6(il,i4,i5),A3(i3,i4,i6))

Record array indices 12 B M5
1 0 1 0 0 1 Al
In matrix A /1 e 1 o 0\ ;
A= 0 1 1 0 1 0 A3
0 0 1 1 0 1 A3,A4
0 0 1 1 0 1 A5
\_! 0 0 1 1 0/ As

Solve LP for x = [x1,...,x7]": max1'x s.t. Ax<1
— Result: x=1[2/7,3/7,1/7,2/7,3/7,4/7],1"x = 15/7 =5
Thm: #words_moved = Q(né/M51)= Q(n8/M8/7)
Attained by block sizes M2/7, M3/7 M7 M2/7 \M3/7 \4/7



Summary and Ongoing Work

Communication lower bounds extend to any program accessing
arrays with subscripts that are “linear functions” of loop indices

— Ex: A(i1+2%*i2,i3-i2), B(pointer(i4+i5)), ...
— Sparsity, indirect addressing, parallelism all included
When can we write down LP for lower bound explicitly?
— General case hard: Hilbert’s 10t problem over rationals
— Works for many special cases

— Ex: subscripts are subsets of loop indices
— Can always approximate lower bound

When can we attain lower bound?
— Works for many special cases (if loop dependencies permit)
— Have yet to find a case where we cannot attain lower bound
— Can we prove this?

Can extend “perfect scaling” results for time and energy
Incorporate into compilers
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Avoiding Communication in Iterative Linear Algebra

* k-steps of iterative solver for sparse Ax=b or Ax=Ax
— Does k SpMVs with A and starting vector

— Many such “Krylov Subspace Methods”
* Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, ...

e Goal: minimize communication
— Assume matrix “well-partitioned”

— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
 New: O(1) moves of data — optimal

— Parallel implementation on p processors
e Conventional: O(k log p) messages (k SpMV calls, dot prods)
* New: O(log p) messages - optimal
e Lots of speed up possible (modeled and measured)
— Price: some redundant computation
— Challenges: Poor partitioning, Preconditioning, Stability 38



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A%X]

A3'X O 06 0 ¢ 0 0 0 0 0 0 0 0 O 0 O 0 O O 0 O O O O 0 O O 0 O 0 O 0 o
AZ'X O 0 0 06 0 0 0 0 0 0 0 0 O O O 0 0 O O O O 0 O O O O O O O 0o o
Ax © o ¢ 6 06 06 0 06 0 0 06 0 06 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o
X o 0 06 06 0 0 0 0 0 06 0 0 O 0 06 0 0 O 0 O O 0 O O O O 0 O O 0 o
12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3
 Works for any “well-partitioned” A
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A%X]
e Sequential Algorithm

A3'X e e, 0 06 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 O 0 O 0 0 O 0 0 0 o
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12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

e Sequential Algorithm

Step 1 Step 2

A3-x °® o o © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
A2.-x © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
A-X © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
X © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4.. .. 32

 Example: A tridiagonal, n=32, k=3
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]
* Parallel Algorithm

Proc 1 Proc 2

AS.x @ o o o o o o o © 0 0 0 00 0 0 0 0 0 0 0
A2.x @ o o o o o o ® 0 0 0 0/0 0 0 0 0 0 0 0
Ax © 0 o o o o © 0 0 0 0/0 0 0 0 0 0 0 0
X © 0 o o o o 0 0 0 olo 0 0 0 0 0 0 0
1 2 3 4.. .. 32

 Example: A tridiagonal, n=32, k=3
* Each processor communicates once with neighbors



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

* Parallel Algorithm

Proc1 Proc 2

A3-x
A2-x
A-X

X

12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3
e Each processor works on (overlapping) trapezoid



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

Same idea works for general sparse matrices

Simple block-row partitioning =»
(hyper)graph partitioning

Top-to-bottom processing =
Traveling Salesman Problem




Minimizing Communication of GMRES to solve Ax=b

* GMRES: find x in span{b,Ab,...,Akb} minimizing | | Ax-b ||,

Standard GMRES Communication-avoiding GMRES
fori=1tok W =[v, Ay, Ay, ..., Ay ]
w=A"-v(i-1) .. SoMV [Q,R] = TSQR(W)
MGS(w, v(0),...,v(i-1)) ... "Tall Skinny QR”
update v(i), H build H from R
endfor solve LSQ problem with H

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

eOops — W from power method, precision lost! .



Log10 of 2-norm relative residual
|
w

Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.

1
“Monomial” basis [AX,...,Akx]
fails to converge

O

Nonrestarted GMRES
v Restarted GMRES(192)
O  Monomial-GMRES(24 8)
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Different polynomial basis [p,(A)x,...,p, (A)x] 7
does converge
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Speed ups of GMRES on 8-core Intel Clovertown
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Requires Co-tuning Kernels
[MHDYO09]

using 8 threads and restart length 60

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,

pwtk

Matrix powers
kernel

TSQR

Block Gram-
Schmidt

Small dense
operations
Sparse matrix-
vector product
Modified
Gram-Schmidt

xenon

bmw cant 1d3pt cfd

Sparse matrix name

shipsec
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Exact Residual (2-norm)
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CA-BICGETAB Convergence, s =32
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With Residual Replacement (RR)
0 a la Van der Vorst and Ye
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Summary of Iterative Linear Algebra

* New lower bounds, optimal algorithmes,
big speedups in theory and practice
* Lots of other progress, open problems
— Many different algorithms reorganized
 More underway, more to be done
— Need to recognize stable variants more easily
— Preconditioning
* Hierarchically Semiseparable Matrices

— Autotuning and synthesis
e pOSKI for SpMV — available at bebop.cs.berkeley.edu
* Different kinds of “sparse matrices”



For more details

* Bebop.cs.berkeley.edu

 CS267 — Berkeley’s Parallel Computing Course
— Live broadcast in Spring 2013

 www.cs.berkeley.edu/~demmel

* All slides, video available from 2012

— Prerecorded version planned in Spring 2013

e www.xsede.org

* Free supercomputer accounts to do homework!
* Free autograding of homework!



Summary

Time to redesign all linear algebra, n-body, ...

algorithms and software
(and compilers)

Don’t Communic...



