Introduction to the On-line Course:

CS267
Applications of Parallel Computers

www.cs.berkeley.edu/~demmel/cs267_Spri4/

Jim Demmel
EECS & Math Departments

demmel@berkeley.edu

Outline

« 3 free on-line parallel computing courses
- Offered by UC Berkeley and XSEDE
» CS267 — Applications of Parallel Computers
- Outline of course
- Big Idea #1: Common Computational Patterns
- Big Idea #2: Avoiding Communication
- Who takes it? What final projects do people do?
« Parallel Shortcourse (CS267 in 3 days)
* CS194 — Engineering Parallel Software (for Performance)

- Undergraduate version — emphasis on (parallel) software engineering

CS267 — Applications of Parallel Computers
» UC Berkeley 1-semester graduate class (some ugrads too)
« Offered every Spring semester - webcast live

- Spring 2015: Jan 20 — Apr 30, T Th 9:30-11:00

- Local students use DOE supercomputers at NERSC
* Archived videos broadcast by XSEDE

- Carefully edited lectures with in-line quizzes

- Available as SPOC = Small, Personalized On-line Course
to students for credit at their universities, with local
instructor to give official grades

- Free NSF supercomputer accounts to do autograded
homework and class projects

- UC Berkeley teaching assistants help answer questions for
remote students

- Contact Steve Gordon (sgordon@osc.edu) if interestéd

Motivation and Outline of Course

all
. Whywl computers must be parallel processors

Including your laptops and handhelds

» Large Computational Science and Engineering (CSE)
problems require powerful computers

Commercial problems too
» Why writing (fast) parallel programs is hard

But things are improving

« Structure of the course

11/17/14

Course summary and goals

* Goal: teach grads and advanced undergrads from diverse
departments how to use parallel computers:

- Efficiently — write programs that run fast

- Productively — minimizing programming effort

* Basics: computer architectures

- Memory hierarchies, Multicore, Distributed Memory, GPU, Cloud, ...
* Basics: programming languages

- C + Pthreads, OpenMP, MPI, CUDA, UPC, frameworks ...

* Beyond basics: common “patterns” used in all programs that
need to run fast:

- Linear algebra, graph algorithms, structured grids,...
- How to compose these into larger programs

* Tools for debugging correctness, performance

* Guest lectures: climate modeling, astrophysics, ...

Which applications require parallelism?

&

Analyzed in detail in
“Berkeley View” report

|HPC

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)

N-Body
MapReduce

Unstructured Grid

Which applications require parallelism?

= TR&

o
[=}

Analyzed in detail in
“Berkeley View” report

Embed
SPEC
Games
HPC

=
=

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)

N-Body
MapReduce

Unstructured Grid

Which applications require parallelism?

Analyzed in detail in
“Berkeley View” report

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body
10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Analyzed in detail in
“Berkeley View” report
www.eecs.berkeley.edu/Pubs/
TechRpts/2006/
EECS-2006-183.html

11/17/14

What do commercial and CSE applications have in common?
Motif/Dwarf: Common Computational Patterns

(Red Hot — Blue Cool)
. A ’ : :

vHeaIth Image Speech Music Browser

Embed

SPEC

Games
C

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix

6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models

13 Unstructured Grid

For (many of) these patterns, we present

* How they naturally arise in many applications

* How to compose them to implement applications

» How to find good existing implementations, if possible

» Underlying algorithms

- Usually many to choose from, with various tradeoffs
- Autotuning: use computer to choose best algorithm
- Lots of open research questions
- What makes one algorithm more efficient than another?

- Most expensive operation is not arithmetic, it is
communication, i.e. moving data, between level of a
memory hierarchy or between processors over a network.

- Goal: avoid communication

Why avoid communication? (1/2)

* Running time of an algorithm is sum of 3 terms:
- #flops * time_per_flop
- #words moved / bandwidth

N communication
- # messages * latency

» Time_per_flop << 1/ bandwidth << latency
« Gaps growing exponentially with time [FOSC]

Annual improvements
Time_per_flop Bandwidth Latency
59% Network 26% 15%
- Avoid communicatiBRAM save tindd% 5%

Why Minimize Communication? (2/2)

Picojoules

1000

100
= now (45nm)

m 2018 (11nmin this case)

Source: John Shalf, LBL

11/17/14

Why Minimize Communication? (2/2)

Minimize communication to save energy

10000

1000

Off-chip

Picojoules
=
8

= now (45nm)

W 2018 (11nmin this case)

1
Q (2
FEFEERE S
O I SO
& & Source: John Shalf, LBL
N\

Goals

* Redesign algorithms to avoid communication
+ Between all memory hierarchy levels
* L1 < L2 <« DRAM <« network, etc
« Attain lower bounds if possible
* Current algorithms often far from lower bounds
» Large speedups and energy savings possible

President Obama cites Communication-Avoiding
Algorithms in the FY 2012 Department of Energy Budget
Request to Congress:

“New Algorithm Improves Performance and Accuracy on Extreme-Scale
Computing Systems. On modern computer architectures, communication
between processors takes longer than the performance of a floating
point arithmetic operation by a given processor. ASCR researchers have
developed a new method, derived from commonly used linear algebra
methods, to minimize communications between processors and the
memory hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been implemented in the
TRILINOS framewoffk, a highly-regarded suite of software, which provides
functionality for redearchers around the world to solve large scale,
complex multi-physjcs problems.”

FY 2010 Congressiorfal Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific

Computing Research (ASCR), pages 65-67.

CA S (H yuddin, Yelick, JD)
“Tall-Skinny” QR (Grigori, Hoemmen, Langou, JD)

Summary of CA Linear Algebra

» “Direct” Linear Algebra

* Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = Ax, SVD, etc

* Mostly not attained by algorithms in standard libraries
* New algorithms that attain these lower bounds

* Being added to libraries: Sca/LAPACK, PLASMA,
MAGMA

* Large speed-ups possible
+ Autotuning to find optimal implementation
+ Ditto for “lterative” Linear Algebra

11/17/14

43 lika?

+ Let M = “fast” memory size (per processor)

#words_moved (per processor) = Q(#flops (per processor) / M'2)

» Parallel case: assume either load or memory balanced

* Holds for

- Matmul,

3 Iilea”

* Let M = “fast” memory size (per processor)
#words_moved (per processor) = Q(#flops (per processor) / M/2)
#messages_sent 2 #words_moved / largest_message_size
» Parallel case: assume either load or memory balanced

* Holds for
- Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

- Some whole programs (sequences of these operations, no matter how
individual ops are interleaved, eg A¥)

- Dense and sparse matrices (where #flops << n?)
- Sequential and parallel algorithms
- Some graph-theoretic algorithms (eg Floyd-Warshall)

"N H ”

* Let M = “fast” memory size (per processor)

#words_moved (per processor) = Q(#flops (per processor) / M12)
#messages_sent (per processor) = Q(#flops (per processor) / M3/2)
 Parallel case: assume either load or memory balanced

* Holds for
- Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

- Some whole programs (sequences of these operations, no matter how
individual ops are interleaved, eg A¥)

- Dense and sparse matrices (where #flops << n3)

SIAM SIAG/Linear Algebra Prize, 2012
Ballard, D., Holtz, Schwartz

Can we attain these lower bounds?

* Do conventional dense all%orithms as implemented in
LAPACK and ScaLAPACK attain these bounds?

- Often not

« If not, are there other algorithms that do?
- Yes, for much of dense linear algebra, APSP

- New algorithms, with new numerical properties,
new ways to encode answers, new data structures

- Not just loop transformations (need those too!)

* Only a few sparse algorithms so far

- Ex: Matmul of “random” sparse matrices

- Ex: Sparse Cholesky of matrices with “large” separators
* Lots of work in progress

20

11/17/14

Summary of dense parallel algorithms
attaining communication lower bounds

Assume nxn matrices on P processors

Minimum Memory per processor = M = 0(n? / P)

Recall lower bounds:

#words_moved = Q((n3/P) /M¥2) = Q(n2/ PL2)
#messages = Q((n3/P) /M32) = Q(PV2)
Does ScalLAPACK attain these bounds?

* For #words_moved: mostly, except nonsym. Eigenproblem
* For #messages: asymptotically worse, except Cholesky
New algorithms attain all bounds, up to polylog(P) factors

* Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD

Can we do Better?

Can we do better?

* Aren’t we already optimal?

* Why assume M = O(n?/p), i.e. minimal?
- Lower bound still true if more memory
- Can we attain it?

2.5D Matrix Multiplication

 Assume can fit cn?/P data per processor, ¢ > 1
* Processors form (P/c)"2 x (P/c)'2 x ¢ grid

(P/c)'/2
Al

\O)
\Qﬁ Example: P = 32, c=2

2.5D Matrix Multiplication

« Assume can fit cn?/P data per processor, ¢ > 1
* Processors form (P/c)"2 x (P/c)'2 x ¢ grid

j

\
ﬁ Initially P(i,j,0) owns A(i,j) and B(i,j)

each of size n(c/P)Y/2 x n(c/P)*/2

‘|

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of 2 A(i,m)*B(m,j)
(3) Sum-reduce partial sums 2| A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C{i,j)

11/17/14

2.5D Matmul on BG/P, 16K nodes / 64K cores

Matrix multiplication on 16,384 nodes of BG/P

100 T T
250 MM
2 2D MM
g 80 2.7X faster]
()
£
S 60 [Using c=16 matrix copies 1
E
5
o 4 N
b
g 12X faster
s 20 1
o
0

8192 131072

2.5D Matmul on BG/P, 16K nodes / 64K cores

c = 16 copies
Matrix multiplication on 16,384 nodes of BG/P

a 14 . : —
o communication =
Z 12 idle
3 95% reduction in-.comm computation m—
N 1
©
E o8
(=}
=
[} .
£ °° 2.7xf;
c 04 -Ixfaster
2
3
§ 12x faster
w

N N 2N N

N8, 8 A N7

79 /99'9 370)9 e,o)a
"% " "2
2] 0] .50

Distinguished Paper Award, EuroPar’11 (Solomonik, D.)
SC’11 paper by Solomonik, Bhatele, D.

Perfect Strong Scaling — in Time and Energy
A Every fime you add a processor, you should use its memory MTtoo

e Start with minimal number of procs: PM = 3n?
¢ Increase P by a factor of ¢ = total memory increases by a factor of ¢
¢ Notation for timing model:
- V1, By, o = secs per flop, per word_moved, per message of size m
* T(cP) = n3/(cP) [yr+ By/M¥2 + a;/(mM*2)]
=T(P)/c
¢ Notation for energy model:
- Ve, Be, o = joules for same operations
- & = joules per word of memory used per sec
- € = joules per sec for leakage, etc.
® E(cP) = cP { n3/(cP) [yg+ Be/MY2 + a/(mM™2) | + 8. MT(cP) + &.T(cP) }
=E(P)
¢ Extends to N-body, Strassen, ...
® Can prove lower bounds on needed network (eg 3D torus for matmul)

What are students expected to do?

* On-line students — quizzes embedded in lectures
» HWO — Describing a Parallel Application

* HW1 — Tuning matrix multiplication

* HW2 — Parallel Particle Simulation

* HW3 — Parallel Knapsack*

* Project — Many possibilities ...

28

11/17/14

On-Line Qui for XSEDE stud

- Simple questions after each 20-30 minute video
ensuring students followed speaker and understood
concepts

- Around 20 questions per lecture depending on length
- All questions multiple choice with 4 options and

students allowed 3 tries (can be varied via moodle
options)

29

HWO — Describi Parallel Applicati

. A short description of self and parallel application that

student finds interesting

- Should include a short bio, research interests, goals for

the class then a description of parallel application

- Helps group students later for class projects

. Examples of the 2012 descriptions can be found at this

link:

https://docs.google.com/a/berkeley.edu/spreadsheet/pub?
key=0AjRuoFQ8J8BRAFVHNNBNTmMhBUXR3ZEIJWExvb21vSOE&single=true&gid=2&output
=html

30

Programming Assignments

. Each assighnment has ‘autograder’ code given to
students so they can run tests and see potential grade
they will receive

. Submission of files is done to the moodle website for
each assignment with instructions for archiving files
or submitting particular compiler directives.

- With help from TAs, local instructors will download
files and run submissions and update scores on
moodle after runs return

For the 2" and 3" assignment this usually takes

30+ minutes for scaling studies to finish .

HW1 - Tuning Matrix Multiol

. Square matrix multiplication
. Simplest code very easy but inefficient

for (i=0;i<n;i++)
for (j=0;j<n;j++)
for (k=0;j<n;k++)
C(ij) = C(i.j) +A(i.k)"B(k.j);

C(i) C(i)
]]

n3 + O(n2) reads/writes altogether

. Give students naive blocked code

32

11/17/14

HWA1 — Tuning Matrix Multiol

- Memory access and caching
- SIMD code and optimization
. Using Library codes where available

100%
ACML

N2 @
3 88
g 2R

an optimized code
(unrolling, vectorization,
few levels of blocking)

@
3
B

IS
2 g

w
8
B

naive blocking |

Fraction of Arithmetic Peal
@
g

N
S
S

T
L | I L

o
Bl

0 128 256 384 512 640 768
Dimension of Matrices 33

HW?2 — Parallel Particle Simulati

. Simplified particle simulation

. Far field forces null outside

interaction radius (makes
simple O(n) algorithm possible)

. Give O(n?) algorithm for

serial, OpenMP, MPI
and CUDA (2" part)

34

. Introduction to OpenMP, MPI . i
and CUDA (2™ part) calls e .

. Domain decomposition and i
minimizing communication] \

Legend

® Current particle

- Locks for bins and avoiding
. . ® Actual neighbor
synchronization overheads * Cnecked partcie

Non-Checked particle

Interaction Radius

Processor Boundary

35

- 0-1 Knapsack problem for n items h’ga ?

HW3 — Parallel Knapsack*

B, T

. Serial, UPC dynamic programming Q
)]

solution given but using inefficient
UPC collectives and layout

y =2
7(:,0)=0
T(w,i) = max(T(w,i-1), T(w-w, i-1) +v;)
T(W__, n)is solution

max’

. Initial UPC version runs slower than serial for most

cases due to communication overhead

36

11/17/14

Students completing class at Berkeley in 2014

* 54 enrolled (40 grad, 9 undergrad, 5 other)
» 28 CS or EECS students, rest from

Applied Math Civil & Environmental
Applied Science & Technology Engineering
Astrophysics Math

BioPhysics Mechanical Engineering

Business Administration Music

Nuclear Engineering
Physics

Chemical Engineering
Chemistry

* 6 CS or EECS undergrads, 3 double

37

CS267 Spring 2014 XSEDE Student Demographics

144 Students from 19 Universities in
North America, South America and Europe enrolled

Grauate and lﬁg%?gggwate Most students were in

represente Computer Science
Not Specified Not Specified
Junior/Senior Computer Science - 39
Doctoral student Physical Science
Master’s student Engineering
Srestmens
Other Biological Science

CS267
Class Project
Suggestions

How to Organize A Project Proposal

+ Parallelizing/comparing implementations of an Application
« Parallelizing/comparing implementations of a Kernel
* Building /evaluating a parallel software tool

+ Evaluating parallel hardware

40

11/17/14

10

A few sample CS267 Class Projects

all posters and video presentations at
www.cs.berkeley.edu/~demmel/cs267_Spr09/posters.html

¢ Content based image recognition
- “Find me other pictures of the person in this picture”

* Faster molecular dynamics, applied to Alzheimer’ s Disease

* Better speech recognition through a faster “inference engine”
e Faster algorithms to tolerate errors in new genome sequencers
e Faster simulation of marine zooplankton population

¢ Sharing cell-phone bandwidth for faster transfers

3/22/12

More Prior Projects

High-Throughput, Accurate Image Contour Detection
CUDA-based rendering of 3D Minkowski Sums
Parallel Particle Filters

Scaling Content Based Image Retrieval Systems

ok wDdh =

Towards a parallel implementation of the Growing
String Method

Optimization of the Poisson Operator in CHOMBO
Sparse-Matrix-Vector-Multiplication on GPUs
Parallel RI-MP2

o

42

© N o o &

More Prior Projects

Parallel FFTs in 3D: Testing different implementation schemes

Replica Exchange Molecular Dynamics (REMD) for Amber's Particle-Mesh
Ewald MD (PMEMD

Creating a Scalable HMM based Inference Engine for Large Vocabulary
Continuous Speech Recognition

Using exponential integrators to solve large stiff problem

Clustering overlapping reads without using a reference genome
An AgagreGATE Network Abstraction for Mobile Devices
Parallel implementation of multipole-based Poisson-Boltzmann solver

Finite Element Simulation of Nonlinear Elastic Dynamics using CUDA

43

Still more prior projects

Parallel Groebner Basis Computation using GASNet

Accelerating Mesoscale Molecular Simulation using CUDA and MPI

Modeling and simulation of red blood cell light scattering
NURBS Evaluation and Rendering
Performance Variability in Hadoop's Map Reduce

Utilizing Multiple Virtual Machines in Legacy Desktop Applications

N o gk o b=

How Useful are Performance Counters, Really? Profiling Chombo Finite
Methods Solver and Parsec Fluids Codes on Nehalem and SiCortex

8. Energy Efficiency of MapReduce

9. Symmetric Eigenvalue Problem: Reduction to Tridiagonal

10. Parallel POPCycle Implementation

44

11/17/14

11

QUESTIONS?

45

11/17/14

12

