Demystifying Computing with Magic

DAN GARCIA UC Berkeley

DAVID GINAT
 Tel-Aviv University

Special Session Overview

- Motivation
- The 5 magic tricks
- The 21 Card Trick
- Magic Hats
- Guess the Value
- Josephus Flavius Circle Game
- Fitch Cheneys Five Card Trick
- Reflection
- Other References
- YOU contribute your tricks

Magic

is Fun!

but Magic

Can be much more than fun

Magic May be Used to

Motivate, Illustrate, and Elaborate on:

- Computing notions
- Problem solving
- Creativity

Computing Notions

- Discrete math terms: e.g., permutations,
- Problem representation: e.g., binary digits
- Algorithmic patterns: e.g., sorting
- General notions: e.g., symmetry

Problem Solving Heuristics

- Problem decomposition
- Simplification, Generalization
- Backward reasoning
- Analogy (transfer)
- Problem representation

Creativity

In mathematics education, e.g. [Silver 1997]:

- Fluency: diverse directions
- Flexibility: adaptation to the task at hand
- Originality: unfamiliar utilization of familiar notions
- Awareness of possible fixations

$11^{\text {th }}$ Variation, aka the " 21 card trick"

- 21 cards in 7×3 grid
- Volunteer picks card, tells column
- Dealer puts that column in middle, redeals by row
- Twice repeated
- Dealer chooses card behind back!

How it works...

- After the $1^{\text {st }}$ redeal, the cards are \#8-14
- Redealt by rows, they're in middle 7
- After the $2^{\text {nd }}$ redeal, they're in \#10-12
- Redealt by rows, they're in the middle 3
- After the $3^{\text {rd }}$ gather, it's card \#11!
- Count 10, and that’s it!!

What students learn...

- Computing Notions
- Intro to Algorithms
- Permutations
- Markov Chains
- Convergence
- Ternary search
- Correctness proof
- Problem Solving
- Analysis, simulation
- Creativity
- Visualization with arrows
- Talking points
- Max \# cards?

Calling the Color of my Hat

Three people, a hat is put on each of them.
Each can see the other two hats but not his own
Each hat may be: Gold, Silver, or Green.
Each person looks at the other two hats.
A the same time each person calls his hat color.
At least one of them is right!

Task Reduction - 2 Hats

4 cases: G G S S G S S G

Asymmetric rules:

- Person-1: Call the color that you see
- Person-2: Call the opposite of what you see

Each person "covers" two cases

But, how to extend to 3 hats?

In the 2-hat case one person "went for" equal colors, and the other - for different colors

So, maybe we'll do the same here ...
But, each person sees two hats ... maybe they will be of the same color, or - of different colors ... so, if "same color" then perhaps one will call this color ... and if "different colors" ... then will call ... ???

Beware of Fixation

The Magic Again, Differently

Version-1: 4 people, 4 hats

Version-2: All of the people are right, or all of them are wrong

Task Reduction - 2 Hats

4 cases: G G S S G S S G
Asymmetric rules:

- Person-1: Call the color that you see
- Person-2: Call the opposite of what you see

Each person "covers" two cases

Fluency

Seek diverse, relevant observations:

- Asymmetric rules
- Each rule "covers" 2 separate cases
- All the 4 cases are "covered"
- Binary representation of the colors (?)

3 Hats: 3 colors, 27 cases

Each color may be 0, 1, or 2
Therefore, 27 cases: 000 , 00 1, ... 222 Each person will "cover" 9 cases (?)

How to split the cases between them?

Originality

Manipulate the three numbers that represent the hats ... but, according to what feature?

- Equality of numbers (?)
- Differences between pairs of numbers (?)
- Sums of numbers (?)
- Modulo of numbers (?)

How to manipulate?

Perhaps look at sums?
In the 2 -hat case the sum could be 0,1 , or 2 :

- Person-1 "covered" the integers: 0 and 2
- Person-2 "covered" the integer: 1

Here there are 7 options for the sum:
$0,1,2, \ldots 6$. How to split them?

How to divide $\{0,1,2,3,4,5,6\}$?

One person will "cover" 3 integers, and the other two people - will "cover" 2 integers each

What should be the integers of the $1^{\text {st }}$ person?

$$
\{1,2,3\} ?
$$

Or: $\{1,3,5\} ?$
Or: $\{0,3,6\}$?

Learn from the 2-Hat case

In the 2-hat case one "went for odd" and the other "went for even"

So, maybe the $1^{\text {st }}$ person here will "go for" $\{1,3,5\}$?

How will the other two split $\{0,2,4,6\} ?$
Maybe: $\{02\}$ and $\{46\}$?
Or: $\quad\{06\}$ and $\{24\}$?

Flexibility

We may transfer the "odd/even" in the 2-hat case into here not just as "odd/even", but as the remainders of 2 . So, in the 3 -hat case we may look at remainders of 3 .

The $1^{\text {st }}$ person may "go for" $\{0,3,6\}$
The $2^{\text {nd }}-$ to $\{1,4\}$
And the 3 rd - to $\{2,5\}$

How will each play his part?

Person-1 will "go for" 0 modulo 3
Person-2 will "go for" 1 modulo 3
Person-3 will "go for" 2 modulo 3

Example 1

We define: Gold = 0, Silver = 1, Green = 2
Example:
Three Hats: Gold, Gold, Green
Person-1 sees: 0, 2 calls: 1 (Silver)
Person-2 sees: 0, 2 calls: 2 (Green)
Person-3 sees: 0, 0 calls: 2 (Green)

Example 2

We define: Gold $=0$, Silver $=1$, Green $=2$
Example:
Three Hats: Gold, Green, Silver
Person-1 sees: 2, 1 calls: 0 (Gold)
Person-2 sees: 0,1 calls: 0 (Gold)
Person-3 sees: 0, 2 calls: 0 (Gold)

Reflection

Computing notions: Numeric representation, disjoint sets, complement, modulo arithmetic

Problem solving: Simplification and generalization, problem representation

Creativity: Diverse attempts, sum utilization, observation of "odd/even" as remainders

Guess the Value

- Remove N cards
- Remaining turned face down in piles from top card to 10

$$
\begin{aligned}
& \text { - E.g., " } 7,8,9,10^{\prime \prime} \\
& \text {. (} 4 \text { cards) }
\end{aligned}
$$

- E.g., "9, 10"
- (2 cards)
- Audience keeps 3 piles, \# cards picked = sum 3 top cards

How it Works

- 3 Piles, top cards

$$
=X, Y, Z
$$

- \# cards in Piles?
- (17-X), (17-Y), (17-Z)
- $33-X-Y-Z$
- Remaining Cards R?
- $R=52$ - Removed - Piles
- $R=52-N-(33-X-Y-Z)$
- $R=19-N+X+Y+Z$
- What N s.t. $R=X+Y+Z$?
- $N=19$

What students learn...

- Computing Notions
- Intro to Algorithms
- Correctness proof
- Error-handling
- What happens when you see a face card?
- Problem Solving
- Importance of a good problem representation
- Notion of complement
- Number of cards = 11 - top
- Creativity
- Algebraic representation

The Josephus Problem

N people in a circle, numbered 1.. N .
Starting with person-2, every second person leaves the circle.

What is the number of the (last) survivor?

Fluency

Seek diverse, relevant observations:

- All the even numbers leave first
- If the circle is of an even number of people, then person-1 survives the next cycle
- The answers for $N=2,3,4,5,6, \ldots$ may help
- Binary representation (?)

Decompose the Problem

Separate between: \mathbf{N} is a power of 2 , or not If N is a power of 2 : each cycle will leave an even amount of people; person-1 will always be skipped, and remain last

If N is not a power of 2 : person-1 will not remain last ... but how can we tell the last?

Flexibility

Solve the general case by capitalizing on the special case, of " N is a power of 2 "

Reason backwards: if we knew the number of the person whose deletion yields a power-of-2 remaining people ... then we can tell the last survivor

Telling the Survivor's Number

$\mathrm{D}=$ the difference between N and the closest power-of-2 smaller-than or equal-to N

After D people will leave, the circle will include a power-of-2 people

Thus, the number of the last survivor is $2 \mathrm{D}+1$

Examples

Example-1: $\mathrm{N}=41 \rightarrow \mathrm{D}=9$
The 9th person to leave is number 18. At this point, 32 people will remain, so the $1^{\text {st }}$ person in this remaining cycle will survive.

The survivor: number 19.

Example-2: $\mathrm{N}=60 \rightarrow \mathrm{D}=28$
The survivor: $2 \times D+1=2 \times 28+1=57$

Binary Representation

Example-2: $\mathrm{N}=60 \rightarrow \mathrm{D}=28$
The survivor: $2 \times D+1=2 \times 28+1=57$
$\mathrm{N}=60$ in binary: 111100
D=28 in binary: 011100
2D in binary: 111000 (shift left)
2D+1 in binary: 111001 (cyclic shift left)

Reflection

Computing notions: Binary representation, powers-of-2, complementing cases

Problem solving: Problem decomposition, backward reasoning

Creativity: Capitalizing on case-1's solution for solving case-2, 2D = binary shift left

Fitch Cheneys Five Card Trick

1. (assistant off-stage)
2. Audience chooses 5 cards from deck, gives to Dan
3. Dan picks 1 , gives back to audience
4. Dan puts his 4 in some order, leaves
5. Assistant enters, says audience card

Aha! \#1 : This is encoding / decoding!

- Just like Pig Latin to confuse parents
- This is really information passing between mathemagician and assistant
- But how did they pass on that info?

$$
\text { J 5P A\& } 4
$$

Aha! \#2 : All cards are fully ordered

- This isn't as easy with 52 random objects
- How should we order cards?
- Ranks are ordered 2-10, J, Q, K (A?)
- Suits are already ordered: \ggg
- But, which first?
- A>A?AノA<2< or A>2

Aha! \#3 : Independently find rank, suit

- With the four cards, we can either...
- Use all 4 cards to choose that card (this is what often comes to mind first!)
- Use some to choose rank, some for suit.
- Big idea: decouple hidden card into 2 dimensions, rank and suit

Aha! \#4 : Pigeon-hole the suit ($5>4$)

- With 5 cards, but only 4 suits, at least 2 have to have the same suit!
- Thus, the suit of the hidden card same as suit of, say, leftmost card
- But that only leaves us
with 3 cards for
encoding the rank (1 out of 13!)

$$
J \text { 5s A\& } 4
$$

Aha! \#5 : Hidden card is 1 of 12, not 13

- Since the suit-revealing card is up, then there are only 12 cards left
- Hmm, how do I specify from among 12 cards by reordering the other 3 ?

$$
J \text { 5, A< } 4
$$

Aha! \#6 : Permutation is n !, $3!=6$

- With $\underline{3}$ cards left, can choose $3!=\underline{6}$

$$
1=123
$$ things by reordering them...Aha! \#2

- But there are 12 cards there!
- All we need is 1 bit, Rodney...
$2=132$
$3=213$
- Do we backtrack or continue?

$$
J 5 A, 4, \begin{aligned}
& 5=312 \\
& 6-221
\end{aligned}
$$

$$
6=321
$$

Aha! \#7: 1 bit = which card we hide!

- We had a choice of that bit in step 3
- Which card did Dan give to audience?
- Which card should we hide?
- If we know that we'll be able to specify an additional number from 1 through 6, say as an offset.

Aha! \#8 : See a (mod) 13 -hr clock

- Same-suit cards are hands on a clock
- Find acute angle
- Show "earlier" card
- Hide "later" card
- (Earlier + [1-6]) mod 13 = Later

Let's do one together, shall we?

- Audience hands us

$$
J A+4 \quad 5 \times 3
$$

1. Which two same suit? $\mathrm{J}>\& 3$
2. Which do we hide among $J \& 3$? 3
3. Place J on the left, reorder others
4. Want 5 (312), so J 5, A\& 4

What do students learn from this?

- Computing Notions

1. Information theory, compression
2. Full ordering of a set (52 cards)
3. Decomposition (rank, suit)
4. Pidgeon-hole principle $(5>4)$
5. Off-by-one matters (12 not 13)
6. Permutation and combinatorics $(3!=6)$
7. Constraints (1 bit left)
8. Modulo arithmetic (modulo 13)

- Problem Solving
- Solution decomposition into 8 aha stages
- Creativity
- Recognition that two same-suit cards are no more than 6 away

Fitch Cheneys Five Card Trick Variant

1. (assistant off-stage)
2. Audience chooses $\mathbf{5}$ cards from deck, gives to Dan
3. Dan picks 1, gives back to audience
4. Dan throws 1 away
5. Dan puts his 3 in some order, makes it "harder" by flipping some, leaves
6. Assistant enters, says
 audience card

Tremendous Resource : CS4FN

- Paul Curzon, Peter McOwan, Jonathan Black @ Queen Mary, University of London
- CS4FN magazine
- Two free books on Magic and CS!
- Some online apps
- If you'd like to contribute tricks, contact them...

And in conclusion... Magic May be Used to

Motivate, Illustrate, and Elaborate on:

- Computing notions
- Problem solving

Audience Participation

- Creativity
Do YOU have any magic to share?

