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Abstract. The informal goal of a watermarking scheme is to “mark” a
digital object, such as a picture or video, in such a way that it is difficult
for an adversary to remove the mark without destroying the content of
the object. Although there has been considerable work proposing and
breaking watermarking schemes, there has been little attention given to
the formal security goals of such a scheme. In this work, we provide a new
complexity-theoretic definition of security for watermarking schemes. We
describe some shortcomings of previous attempts at defining watermark-
ing security, and show that security under our definition also implies
security under previous definitions. We also propose two weaker security
conditions that seem to capture the security goals of practice-oriented
work on watermarking and show how schemes satisfying these weaker
goals can be strengthened to satisfy our definition.

1 Introduction

Informally, a digital watermarking scheme is a procedure which embeds a “mark”
in an object so that it is hard to remove the mark without “damaging” the
object. These procedures have a wide variety of applications to digital rights
management, including detection of unauthorized copies, limitations on media
copying, tracing of information leaks, and resolution of ownership disputes over
digital content; for further exposition on various applications see, for example [1,
ch. 20]. As a result, watermarking schemes have seen intense research efforts; for
example, see [2] and the references therein, or the proceedings [3–16]. Most of
this work is focused on the construction of schemes for various digital media and
attacks on these schemes, where there is a long history of schemes being broken
almost immediately after they are proposed.

Given this history, it is not surprising that in the security community, there
is a perception that secure watermarking is “theoretically impossible,” as ex-
pressed, for instance, in [1, 17, 18]. While this idea is intuitively appealing, it
is difficult to prove something is (im)possible without first formally defining
the notion. Consider for instance, the related notions of program obfuscation
and steganography, which were both widely believed to be impossible. Program
obfuscation was formalized and shown to be impossible in general [19], but subse-
quently some progress has been made in limited cases [20, 21]. Steganography, in
contrast, was formalized and shown to be possible, but at limited rates [22–24].



Surprisingly, formal definitions for watermarking security have only recently
appeared in the literature. The state of the art focuses on defining schemes
secure against specific “protocol attacks,” which attack the protocols that use a
watermark rather than removing a mark from an object [25]; these very powerful
attacks changed researchers’ understanding of what it means for a watermark to
be “secure.” For example, Kutter et al. [26] introduced the copy attack, in which
a watermark is copied from an object O1 into an object O2 to form an object
O′2 that appears marked even though it was never legitimately watermarked.
This makes it impossible to use the attacked watermarking scheme for various
applications, such as resolving ownership disputes.

Later Adelsbach, Katzenbeisser, and Veith formalized copy attacks and a dif-
ferent protocol attack known as an ambiguity attack. They then showed protocols
intended to be provably secure against these attacks [27]. Several other authors
have also produced schemes claimed to be provably resistant to copy attacks or
other protocol attacks [28, 29].3 While this line of work has led to interesting
results, there are some limitations, which we summarize in [30]. Additionally,
this approach leads to an “arms race,” in which, as new protocol attacks are
discovered, new watermarking schemes must be designed and proven secure.

The primary contribution of this work is to initiate the systematic study of
watermarking security definitions. We define a “strong watermarking” security
condition with respect to a metric space on objects, which compares a water-
mark to an ideal functionality in which an object is marked if and only if it is
similar to some object previously marked by the functionality. We show that
this definition implies security against previously known protocol attacks, and
explore the question of proving impossibility. We also explore weaker security
conditions and show how, under some conditions, schemes satisfying these weaker
definitions can be strengthened or amplified to produce strong watermarks.

We stress that in these latter results, we explicitly do not construct “secure”
watermarking schemes from scratch. Instead, we show that watermark design-
ers can achieve a strong notion of security from weak constructions that are
not secure against protocol attacks. These results have two implications. First,
impossibility results for strong watermarking in a metric space will also imply
impossibility of these weaker goals. Second, this means that watermark designers
need not complicate their schemes by attempting to rule out protocol attacks.
Instead, they need only achieve the weaker notion and then apply our results;
put another way, it is enough to build schemes that heuristically satisfy these
goals and apply our constructions to build (heuristically) strong watermarking
schemes, similar to results that say we can build (heuristically) strong secret-key
encryption schemes from (heuristically) strong block ciphers.

Overview of our results. In Section 3 we propose a new definition of se-
cure watermarking schemes, that we call strong watermarking, in the case that
the marking and detecting procedures share a secret key. Our definition allows

3 We stress that these constructions, similarly to our own, do not attempt to construct
a provably secure watermark “from scratch” but rather try to build something “se-
cure against X” from a watermark that is not assumed to be secure in this sense.



the adversary to make adaptive queries to oracles for both marking an object
and detecting whether an object is marked. The main idea of the definition is
that a strong watermarking scheme (in which there is no communication between
the marking and detection procedures) should simulate an “ideal watermarking
functionality,” which we define. We show that strong watermarking implies secu-
rity against all known protocol attacks, and argue that the definition will imply
security against future protocol attacks. Furthermore, we show that security in
our model depends critically on both the notion of similarity and the distribu-
tion on objects to be marked; specifically, we show an example of these settings
under which strong watermarking is impossible, and an example where strong
watermarking exists, relative to an oracle.

In Section 4 we introduce a “weaker” notion of watermark, which we call a
non-removable embedding. This is a weak notion because it only requires that the
watermark cannot be removed; we explicitly allow copy and ambiguity attacks
to succeed against non-removable embeddings. We formalize this notion, prove a
separation between the notion and our proposed strong definition, and point out
that many watermarking schemes in the literature use a security metric closely
related to this notion. We also introduce a notion of “limited” adversaries, who
only create new objects based on some limited set of transformations. This notion
is interesting since there are some techniques in the watermarking literature
which seem to imply provable security against “limited” attacks such as Gaussian
noise. Additionally, some applications of watermarking only require watermarks
to be “robust” against distortions caused by physical processes; these can be
modeled by limited adversaries. We note that all of our results on amplification
can be easily extended to the limited adversarial setting. We then show how
schemes that are provably secure under the strong watermarking definition can
be constructed from non-removable embeddings plus a semi-offline trusted third
party, a standard digital signature scheme, and a semantically secure symmetric
encryption scheme. This shows that our notion of strong watermarking can be
built on the “weak” primitive of non-removable embeddings. While we do require
a third party, this party is not required during watermark detection.

In Section 5 we study an alternative method for producing a strong water-
marking scheme. Specifically, we consider the question of security amplification
of watermarking schemes. We formally specify two new notions that correspond
to a weaker version of strong watermarking and show how schemes which satisfy
these natural conditions can be efficiently composed to produce strong water-
marking schemes. Note that this construction can be seen as an heuristic method
to create strong watermarking schemes as well as a way to extend impossibility
results for a given notion of similarity.

2 Preliminaries

We will work with discrete metric spaces. A discrete metric space M is a finite
space equipped with a distance function d :M×M→ Z

+ ∪ {0}. The distance
function is symmetric, obeys the triangle inequality and has the property that
if d(x, y) = 0 then x = y. We will associate with a metric space a similarity



relation ∼ defined by x ∼δ y ≡ d(x, y) ≤ δ for some fixed δ. When the meaning
is clear from context, we will drop the δ and simply write ∼. For simplicity, we
will assume that all parties can efficiently evaluate ∼. Finally, we denote by D
a distribution on M. Unless otherwise specified, we assume that all parties can
efficiently sample from D and we denote by O ←R D an object O ∈M sampled
according to the distribution D.

We will also make use of a digital signature scheme S = {SGen,Sig,Ver}. We
say that a signature scheme is (t, q, ǫ)-existentially unforgeable under adaptive
chosen message attack [31] if all adversaries running in time at most t making
at most q queries to a signature oracle have chance at most ǫ of obtaining a
signature on a message not previously queried.

We will use a symmetric encryption scheme SE = {Encrypt,Decrypt}. We
say that a symmetric encryption scheme is (t, q, ǫ)-secure in the left-or-right
sense [32] if every time t adversary, given q queries to a “left-or-right” oracle
LORK(b, x0, x1) = Encrypt(K,xb) cannot distinguish between the case that b =
0 and b = 1 with advantage better than ǫ.

Finally, we will need a pseudorandom function ensemble
{

F : {0, 1}k ×

{0, 1}L(k)→ {0, 1}ℓ(k)
}

k∈N
[33]. We say that a function F is (t, q, ǫ)-pseudorandom

if any adversary running in time at most t and making at most q queries to a
function oracle can distinguish an oracle for F (Uk, ·) from an oracle for a random
function f : {0, 1}L(k) → {0, 1}ℓ(k) with advantage at most ǫ.

3 Strong Watermarking

As previously mentioned, the informal notion of a watermarking scheme requires
the ability to somehow “mark” digital objects, such as pictures, sound, video, or
text. The scheme should also satisfy several additional requirements:

– The result, O′, of marking an object, O, should be “similar” to O.
– An adversary, given O′, should not be able to find an object O′′ that is

similar to O′ but unmarked; this prevents removal of the mark except by
“damaging” the object.

– Most objects O must not be marked. If this is not the case, then certain
desirable uses of watermarks, such as searching for copies of O′ and proving
ownership of O′, are not possible.

– There should be no communication required between the marking procedure
and the detecting procedure; or this communication should be minimized.
This is necessary for many applications, for example, a media player that
may not have a network connection.

We will model the notion of similarity or damage by postulating the existence
of a “perceptual metric” that measures the distance between objects of a given
type. Thus such a metric would assign a small distance between two pictures that
look alike and a large distance between two very different pictures. In practice it
is difficult to characterize such a metric space, so researchers typically focus on
Euclidean or weighted L1 distance in some “perceptually significant” space such
as the Fourier [34], Wavelet [35], or Fourier Mellin [36] transforms. Once we fix



a metric d, the natural notion of similarity is the relation ∼δ defined previously,
that is, we will say that objects O1 and O2 are similar if d(O1, O2) ≤ δ.

Given this formalization of similarity, we can construct a perfectly secure
watermarking scheme that optimally satisfies the above requirements. To mark
an object O with key K, the ideal scheme simply adds O to its list of objects
marked with K; to test whether an object O′ is marked with K, the ideal scheme
simply searches the appropriate list of marked objects and returns true if it finds
an object similar to O′ and false otherwise. This “ideal” scheme does not allow
an adversary to succeed in “unmarking” a marked object but leaves the largest
possible set of objects unmarked subject to this constraint. The ideal scheme
is undesirable in that it requires unbounded, online communication between
the marking and detection algorithms; our intent is to compare a real-world
watermarking scheme (which does not allow any online communication between
the marking and detection procedures) to this ideal.

An informal statement of our definition allows an adversary access to a mark-
ing oracle and a detection oracle for a watermarking scheme. The adversary then
attempts to attack the scheme by finding an object such that the results of the
actual detection algorithm and the ideal detection procedure differ: either the ob-
ject is marked and should not be, or it is unmarked and should be. Unfortunately,
any watermarking scheme that produces objects that are similar to its input and
has a static detection scheme would be insecure under this definition. The intu-
ition is that the following attack would succeed with very high probability:

1. The adversary samples an object O ∈ M. Since it has not been queried to
the marking procedure, it is not yet marked under the ideal scheme.

2. Next the adversary queries Mark(O), to get an object O′ similar to O.
3. Finally, the adversary queries Detect(O). In the watermarking scheme under

attack, O should not be marked (since it was not marked in step 1, and
there is no communication between marking and detection schemes). But in
the ideal scheme, it is close to O′, which is marked. Thus the adversary has
succeeded in finding an object on which the real and ideal schemes differ.

We give a formal proof of this in [30], where we also show that a cryptograph-
ically natural alternative definition also rules out secure schemes that distort
originals by less than half the similarity radius. Our solution is to introduce a
third, challenge oracle that selects objects to watermark from some probability
distribution; the performance of the watermarking scheme is only compared to
that of the ideal scheme on these challenge objects.

3.1 Definition of Strong Watermarking Schemes

A secret-key watermarking scheme W = {WMGen,Mark,Detect} consists of
three algorithms: WMGen : 1∗ → Keys generates a secret key to be used in
marking and detection; Mark : Keys ×M → M takes a key and an object to
mark and returns a new object; and Detect : Keys ×M → {true, false}. Notice
that we do not explicitly allow any online communication between the Detect and
Mark procedures, since in many applications the devices detecting and marking
objects may not have any means by which to communicate.



Oracle Mark∗(O):
1. O′ ← Mark(K, O)
2. Marked← Marked ∪ {O′}
3. return(O′)

Oracle Detect∗(O):
1. b← Detect(K, O)
2. B′ ← IdealDetect(O)
3. if b 6∈ B′

4. then bad← true

5. return(b)

Oracle Challenge∗D()
1. O ←R D
2. O′ ← Mark(K, O)
3. chalns← chalns ∪ {O′}
4. Marked← Marked ∪ {O′}
5. return(O′)

Fig. 1. Definition of Mark∗, Challenge∗ , and Detect∗ oracles for strong watermarking.
The global variables K, Marked, chalns, and bad are initialized in Figure 2.

Experiment Exp
strong
D,W (A):

1. K ←WMGen(1k)
2. bad← false

3. Marked← ∅
4. chalns← ∅

5. AMark∗,Challenge∗,Detect∗()
6. return (bad)

Procedure IdealDetect(O):
1. if (∃O′ ∈ chalns : O ∼ O′)
2. then return {true}
3. else if (∃O′ ∈ Marked : O ∼ O′)
4. then return {true, false}
5. else

6. return {false}

Adv
strong
D,W (A) = Pr[bad = true]

Fig. 2. Definition of security experiment for strong watermarking.

We can now define strong watermark security. Our definition formalizes the
informal discussion above. An adversary is given access to oracles for Mark and
Detect, and a special Challenge∗ oracle that samples and marks objects from
an efficiently sampleable distribution D over M. The adversary wins if he calls
Detect∗ on an object that is either marked, but not similar to the result of a Mark∗

or Challenge∗ query, or unmarked, but similar to the result of some Challenge∗

query. Notice that unlike in the hypothetical discussion above, we only require
the objects near the result of Mark (rather than the input) to be marked, since
these are (presumably) the ones that the adversary will be able to access. The
formal security experiment has four global variables: Marked and chalns, sets of
objects; bad, a boolean flag; and K, a key. In Figures 1 and 2 we show pseudocode
for initializing the security experiment and the ideal detection functionality, as
well as for oracles Mark∗, Challenge∗, and Detect∗. We note that some of our
reductions require the ability to sample from the distribution D on M.

We say that a watermark is ρ-preserving for D if Pr[K ←WMGen(1k);O ←R

D;O′ ← Mark(K,O) : d(O,O′) > ρ] is negligible in k; that is, if the marked
version of an object is almost always within distance ρ of the original. This
“bounded distortion” requirement is not strictly necessary for security in all
applications, but is typically vital to the utility of a watermarking scheme.

The advantage of an adversary AStrong is Adv
strong
D,W (AStrong) as defined in

Figure 2. The scheme is a (D, t, qM , qD, qC , ǫ, δ)-strong watermarking scheme if
for all adversaries AStrong running in time at most t, making at most qM queries
to Mark∗, at most qD queries to Detect∗, and at most qC queries to Challenge∗ ,
the advantage of AStrong is at most ǫ with respect to similarity relation ∼δ.

Philosophically, one may think of the above experiment as a game between,
say, a “hacker” and a “studio.” The hacker can “give” movies to the studio to see
how they look when marked, and he can check, using his personal DVD player,
whether any particular object is marked. Meanwhile, the studio will release other



videos not created by the hacker; it is the hacker’s goal to “unmark” one of these
movies, or alternatively, to create a movie that appears to be marked but was
never marked by the studio. If the hacker cannot do this, the studio can have
good confidence that a movie will appear marked iff it was produced by them.

Dependence on ∼ and D. It should be clear that the existence of strong
watermarks depends critically on both the similarity relation ∼ and the distri-
bution on challenge objects, D. For instance, if an attacker can deduce, given
the result of a query to Challenge∗D, the object O ←R D from line 1 of Figure 1,
then as pointed out in our earlier discussion, the scheme cannot be secure for D
and ∼. Thus D must have high entropy, and Mark must be “one-way” for most
keys. Likewise, if for any given O, enumerating the set Nδ(O) = {O′ : O′ ∼ O} is
feasible, then a watermarking scheme cannot be secure. In this work, we do not
explore all the necessary conditions on ∼ and D; it seems to be a difficult chal-
lenge to even identify the correct similarity metric and distribution for many of
the applications of watermarking. Here we briefly give two results that show that
even when the previous two conditions are satisfied, there cannot be a “generic”
argument for the existence or impossibility of strong watermarks.

Proposition 1. Let D be the uniform distribution on k-bit strings and let d(x, y)
be the hamming distance metric on k-bit strings. Then there is no δ-preserving,
(D, O(k), 1, 1, 1, 1/2δ+1, δ)-strong watermarking scheme.

Notice that for δ(k) = O(log k), the neighbor set has size superpolynomial in
k, and D has k bits of entropy, yet no watermarking scheme can have security
better than 1/2k. The proposition can be seen to be true as follows. Suppose we
uniformly pick a point x ∈ {0, 1}k; consider the point y returned by Mark∗(x),
and let z and w be uniformly chosen points in Nδ(y) and Nδ(x), respectively.
Now we know that if a watermarking scheme is to be ε-secure, it must be that
Pr[Detect∗(z) = false] ≤ ε, since otherwise an adversary can remove a mark with
probability greater than ǫ by sampling a random point in the neighborhood of a
marked object. It can also be shown that Pr[z ∈ Nδ(x)] ≥ 1/2δ. This gives us that
Pr[z ∈ Nδ(x)∧Detect∗(z) = true] ≥ 1−(Pr[z 6∈ Nδ(x)]+Pr[Detect∗(z) = false]) ≥
2−δ − ε. Note that ε security also requires that Pr[Detect∗(w) = true] ≤ ε, since
otherwise we can easily find a marked point – by randomly sampling an object
in the neighborhood of a random point – breaking the watermark. Thus we also
have that ε ≥ Pr[Detect∗(w) = true∧w ∈ Nδ(y)]. But by symmetry, for any fixed
choice of K, x, y, we have Pr[Detect∗(w) = true∧w ∈ Nδ(y)] = Pr[Detect∗(z) =
true ∧ z ∈ Nδ(x)]. This gives ε ≥ 2−δ − ε, or ε ≥ 2−δ−1.

Notice that a similar argument applies to any metric space, distribution and
marking function such that (i) the neighborhood of an object and its marked
version are symmetric, (ii) these neighborhoods have noticeable intersection, and
(iii) it is possible to uniformly sample from the neighborhood set of an object.
Thus to rule out an impossibility result, we seek to violate these properties.

Proposition 2. There exists an oracle Π, relative to which there exists a dis-
tribution DΠ , a metric dΠ , and a 1-preserving watermarking scheme WΠ such
that WΠ is (DΠ , t, t, t, t, t2/2k, 1)-strong.



Experiment Exp
cp

D,W
(B) :

1. K ← WMGen(1k)
2. O1 ←R D
3. O′

1 ← Mark(K, O1)
4. O2 ←R D
5. O′

2 ← B(O′

1, O2)
6. if Detect(K, O′

2)
7. and O2 ∼ O′

2 6∼ O′

1
8. then b = true
9. else b = false
10. return(b)

Adv
cp

D,W
(B) = Pr[b = true]

Experiment Expamb
D,W (B) :

1. K ← WMGen
2. repeat

3. O1 ←R D
4. until Detect(K, O1) = false

5. O′

1 ← B(O1)
6. if Detect(K, O′

1) and O1 ∼ O′

1
7. then b = true
8. else b = false
9. return(b)

Advamb
D,W (B) = Pr[b = true]

AdversaryAB
cp() :

1. O1 ← Mark∗(O ←R D)
2. O2 ←R D
3. O′

2 ← B(O′

1, O2)
4. Detect∗(O′

2)

Adversary AB
amb:

1. O1 ←R D
2. Detect∗(O1)
3. O′

1 ← B(O1)
4. Detect∗(O′

1)

Fig. 3. Experiments for copy and ambiguity attacks and the corresponding strong
watermark adversary.

Intuitively, we will choose Π, dΠ and DΠ so that for most strings x it will
be very hard to even find a string y such that dΠ(x, y) = 1, but the oracle
gives us a way to sample from a set of “special” strings x′ that violate this
property. Once we mark an object x′ it is no longer in this special set, so it is
hard for the adversary to remove the mark. Formally, the oracle Π “knows” a
uniformly chosen bijection π : {0, 1}2k → {0, 1}k×{0, 1}k for each k and answers
three types of queries: sample, dist, and move. Π(sample, y) returns π−1(y, 0k).
Π(dist, x0, x1) computes (yb, zb) = π(xb), and then returns 0 if x0 = x1, 1 if
y0 = y1 and some zb = 0k, 2 if y0 = y1, and 3 otherwise. Π(move, x, z′) computes
(y, z) = π(x); if z = 0k then it returns π−1(y, z′); if z = z′ it returns π−1(y, 0k),
and otherwise it returns x. The distribution DΠ is defined as Π(sample, Uk) and
the metric dΠ(x, y) = Π(dist, x, y), so that for most 2k-bit strings x, there is
only one string at distance 1 from x. The marking scheme WΠ uses k-bit keys,
and computes MarkΠ(K,x) = Π(move, x,K), while DetectΠ(K,x) returns true

iff Π(move, x,K) 6= x.
We remark that, obviously, the oracle distribution Π does not prove that

strong watermarks exist. It merely shows that there cannot be a “black-box”
proof that rules out all possible strong watermarking schemes without consider-
ing the details of D and ∼. We believe it is an interesting open question to find
anyD and∼, even if they are contrived, that provably admit a strong watermark-
ing scheme without reference to an oracle, or even with small values (qM , qC , qD).

3.2 Strong Watermarks Are Secure Against Protocol Attacks

Adelsbach et al. provided the first formal definition of copy attacks and ambigu-
ity attacks [27]. We adapt their definitions to our setting, in which we consider
only the presence of a mark rather than its content. We show that strong wa-
termarks are secure against copy and ambiguity attacks.

First we consider copy attacks. Informally, a copy attack occurs when an ad-
versary can “copy” a watermark from a marked object O′1 to a second object O2.
In our watermarking model, “copy” means that the adversary, given a marked
object O′1, can cause an object O2 to return true for Detect∗ despite never
having been queried to Mark. More formally, we say a watermarking scheme is
(D, t, ǫcp, δcp)-secure against copy attacks if all adversaries B running in time
at most t have advantage Adv

cp
D,W(B) ≤ ǫcp with respect to similarity relation



∼δcp
. Notice that in this definition (and in the original definition of Adelsbach et

al. [27]) the copy adversary is not afforded access to a Mark∗ or Detect∗ oracle.
We can prove that a D-strong watermarking scheme is not vulnerable to copy
attacks for any sampleable distribution D′ : if there exists an adversary B that
successfully carries out a copy attack, then the adversary AB

cp in Figure 3 suc-
ceeds at breaking the strong watermark. A formal theorem statement and proof
are in [30].

Next, we consider ambiguity attacks. A classical ambiguity attack takes an
unmarked object O1, and produces a new “original” object O2 such that O1

appears to be marked with O2 as the original. In our model, we can recast
ambiguity attacks as, given an unmarked object O1, find an object O2 such
that O2 ∼ O1 and O2 appears to be marked, without legitimately marking O2.
Strong watermarking implies security against ambiguity attacks: if B succeeds
at carrying out an ambiguity attack, then the adversary AB

amb shown in Figure 3
breaks the strong watermark. Details are in [30].

Remark. We note that some works on protocol attacks describe attacks where
the adversary is allowed to choose the key to the watermarking scheme. While
it is important to eventually address such chosen-key attacks, we believe it is
an interesting and important first step to concentrate on getting the definitions
right for the more basic scenario. Thus in this paper we do not consider attacks
that involve manipulating the keys of the marking and detection procedures.

4 Non-Removable Embeddings and Strong Watermarks

Many watermarking schemes in the literature actually provide a somewhat differ-
ent interface from the watermarking primitive described in the previous section.
Instead, these schemes focus on embedding a short string within an object so that
if the adversary does not distort the object too much, the embedded string can
be recovered. Typical schemes do not attempt to prevent “insertion” of strings
into an object, which is the reason that many protocol attacks succeed. In this
section, we give a formal notion of a primitive, the non-removable embedding
(NRE), that seems to capture this design goal. We will demonstrate that NREs
are provably weaker objects than strong watermarks: if NREs exist at all, then
there are NREs that allow copy attacks. After separating the notions of NREs
and strong watermarks, we give a construction which makes limited use of a
semitrusted third party to construct a strong watermarking scheme from a NRE.

The notion of an NRE is closely related to a security notion widespread
in the watermarking literature. Many schemes presented in the watermarking
literature, for example [37–41], take as their evaluation metric the bit error rate
for a watermarked message given a specified constraint on the distortion allowed
the adversary, or “watermark to noise ratio.” Essentially, these schemes attempt
to bound the rate of bit errors in the embedded string for a given amount of
distortion induced by the adversary. One of the interesting properties of the NRE
notion is that we can easily build an NRE from such schemes. Because we deal
with probabilistic polynomial time adversaries, we can assume that the bit errors
follow a computationally bounded distribution. Therefore, we can use the coding



Experiment ExpNRE
D

(A):

1. (z, z′)← EMGen(1k)
2. Embedded← ∅

3. OA ← AEmbed(z,·,·),Challenge∗ (z′)

Oracle Challenge∗(m):
1. O ←R D
2. O′ ← Embed(z, O, m)
3. Embedded← Embedded ∪ {(O′, m)}
4. return O′

AdvNRE
D (A) = Pr[∃(Oi, mi) ∈ Embedded : OA ∼ Oi ∧ Extract(z′, OA) 6= mi]

Fig. 4. Security experiment and Embed∗ oracle for non-removable embeddings.

methods of Micali et al. to obtain an NRE from up to a bit error rate of one half:
we simply encode the message before embedding and decode on extraction [42].

To begin, an embedding scheme (Embed,Extract,EMGen) is a triple of al-
gorithms with the following signatures: Embed : Aux × M × {0, 1}k → M,
Extract : Aux′×M→ {0, 1}k∪ ⊥, and EMGen : 1∗ → Aux ×Aux′ for some fixed
k. Here M is a metric space, and Aux and Aux′ are sets of possible auxiliary
inputs. For example, Aux might be a set of secret keys, while Aux′ might be a
set of public keys. k is the length of strings to be embedded in objects.

We further require that embedded messages can be extracted, i.e. for (z, z′)←
EMGen(1k), we have Extract(z′,Embed(z,O, x)) = x with high probability. An
embedding scheme is ρ-preserving for D if for all m ∈ {0, 1}k, d(Embed(O,m), O)
≤ ρ with high probability over O ←R D. Together, these give a correctness and
a bounded distortion requirement for a non-removable embedding.

We define security of embedding scheme NRE by saying it is (D, t, qE , qC , ǫ, δ)
non-removable for distribution D if for all A running in time at most t, that make
at most qE queries to an Embed oracle and at most qC queries to the Challenge∗

oracle, the advantage AdvNRE
D (A) defined in Figure 4 is at most ǫ.

Remarks. This definition does not rule out the protocol attacks we have dis-
cussed: in particular, if there is a ρ-preserving non-removable embedding for the
metric spaceM with metric d, we can construct a 2ρ-preserving non-removable
embedding for the metric space M× {0, 1}k with metric d′, that allows copy
attacks to succeed, as follows. We define the metric d′((O1, y1), (O2, y2)) to be
d(O1, O2) if y1 = y2 and d(O1, O2) + ρ otherwise; define Embed′(z, (O, y), x) =
(Embed(z,O, x), x), and Extract′(z′, (O, x)) = Extract(z′, O) if Extract(z′, O) 6=⊥
and Extract′(z′, (O, x)) = x otherwise. Then it is easy to see that, as long as
ρ < δ, given a marked object O = (O1, x) and an unmarked object O′ = (O2, y)
we can “copy” the mark from O onto O′ by setting O′′ = (O2, x); yet it is still
hard to remove x from O.

Although we do not explicitly require it, we note that typical applications
will require that ρ < δ and in many cases, ρ ≪ δ. We also note that it is
trivial to construct a ρ-preserving non-removable embedding for the case that
ρ = sup(x,y)∈M×M d(x, y), using an error correcting code with minimum distance

2δ, if one exists for the metric space M.4 Thus the interesting question, for a
given metric space, becomes “for what values of (ρ, δ) is a NRE possible?”

4 We let Embed(O, x) = encode(x) and Extract(O) = decode(O). If the code’s min-
imum distance is 2δ then clearly any distortion by distance δ or less will result in
extraction of the “embedded” message, but the worst-case distortion of this proce-
dure is the maximum possible distance between two objects in M.



Barak et al. [43] defined watermarking for circuits, showing there are families
of circuits for which such watermarking is impossible, and that the notion is
incompatible with obfuscation even for watermarks that only succeed on some
circuits. They briefly discuss how allowing “approximate implementations” may
change their results. Our definition, in contrast, places these decisions in the
choice of ∼ and the distribution D.

We also note that many “public-key” watermarking schemes in the literature
seem to target (D, t, qE , 1, ǫ, δ) non-removability, expressed in terms of bit error
rate for the watermarked message as noted above. A simple hybrid argument im-
plies such schemes also have (D, t, qE , qC , qCǫ, δ) non-removability [44, 41]. Thus
while we are not aware of any strong candidate NREs, the existence of such a
scheme seems to be a natural assumption if watermarking can be feasible at all.

We note that Moulin and Wang have shown that quantization index modula-
tion (QIM) techniques provide provably good watermarks against an adversarial
memoryless channel. The restriction to memoryless channels, together with an
assumption that the host signal is Gaussian, allows them to analytically derive
the “worst possible” channel and evaluate the bit error rate for a watermark
signal under a specified bound on the mean squared error introduced by the
adversary. Therefore, we can view their result as showing that QIM techniques
yield a non-removable embedding for the class of memoryless adversary chan-
nels. While this is a severely limited class of adversaries, it shows that our notion
is realizable at least under “toy” circumstances.

Finally, the StirMark benchmark [45, 46] performs transformations such as
resampling, resizing, and “jitter” in images; this benchmark is widely used to
evaluate watermarks. We can capture both Moulin and Wang’s result and the
StirMark benchmark in our framework. If C is a set of object transformations, we
define an attacker from class C to be an adversary who can only create objects via
sampling from D, queries to oracles, and applying transformations from C to ob-
jects he has already created. Then it is a straightforward extension of our results
to show that if there is an NRE that is secure against all attackers from class C,
there is a strong watermarking scheme that is secure against all attackers from C.

4.1 Building Strong Watermarks from Embeddings

We now show how to build ideal watermarking schemes from non-removable em-
beddings, digital signature schemes, and a trusted third party (TTP). The main
benefit of our scheme is that the TTP need not be present during watermark
detection; anyone can check whether an object is marked without needing to
contact the TTP in a wide variety of cases. Our scheme requires digital signa-
tures in addition to a TTP because the underlying embeddings are not assumed
secure against insertion of watermarks or copy attacks. The nonremovable em-
bedding is necessary to allow offline detection, because otherwise an adversary
could remove any metadata that might be attached to an object as a mark.

The TTP has well-known public keys and provides two services over se-
cure channels: Register(O, K, x) picks a unique identifier i, checks that x =
Encrypt(K,O), and returns (i,SigTTP (i, x)); Retrieve(i) returns the x associated



Algorithm MarkE((z, z′, K), O)
1. x← Encrypt(K, O)
2. (i, σ)← Register(O, K, x)
3. O′ ← Embed(z, O, (i, σ))
4. return O′

Algorithm WMGenE(1k)

1. (z, z′)← EMGen(1k)

2. K ←R {0, 1}k

3. return (z, z′, K)

Algorithm DetectE((z, z′, K), O∗; TTPList):
1. if (Extract(z′, O∗) =⊥) then return false

2. (i∗, σ∗)← Extract(z′, O∗)
3. x∗ ← Retrieve(i∗; TTPList)
4. O ← Decrypt(K, x∗)
5. if (x∗ =⊥ or O =⊥ or VerTTP((i∗, x∗), σ∗) = false)
6. then return false
7. if Embed(z, O, (i∗, σ∗)) ∼ O∗

8. then return true
9. else return false

Fig. 5. Pseudocode for WMGenE , MarkE , and DetectE
.

with i if any exists, or ⊥ otherwise; we assume that neither call returns un-
til a correctly authenticated response is received. We require that parties who
execute Mark can communicate with the TTP as necessary. However, Retrieve

is implemented in a semi-offline manner. Unique identifiers are assigned in as-
cending order, and the TTP publishes a signed list, TTPList, of all (i, x) pairs
each day. Consequently, Retrieve(i;TTPList) only needs to contact the TTP if
i > TTPList.length. Standard measures (such as substituting a zero-knowledge
proof of knowledge of (O,K) for (O,K); maintaining an ordered, signed TTPList;
checking for consistency of TTP lists between updates; et cetera) can be taken
to reduce the level of trust required in the TTP; we omit them for clarity of
presentation, and because they do not affect the security proof.

Now let E = (Embed,Extract,EMGen) be an embedding; and let SE =
(Encrypt,Decrypt) be a symmetric encryption scheme. We then define a new
watermarking scheme WE = (WMGenE,SE ,MarkE,SE , DetectE,SE) as shown in
Figure 5. Mark(O) encrypts O, registers the ciphertext with the TTP, and em-
beds the TTP’s identifier and signature in O. Detect(O;TTPList) extracts the
TTP identifier and signature, retrieves the associated ciphertext, and checks that
O is close to the result of Embed applied to the plaintext.

The main result of this section is that if the underlying embedding is non-
removable, then the scheme WE satisfies our notion of strong watermarking.
Formally, we can state the following theorem, whose proof is in [30].

Theorem 1. Suppose E is a (D, tE , qEM , qEC , ǫE , δ)-secure non-removable em-
bedding, S = (SGen,Sig,Ver) is (tS , qS , ǫS)-existentially unforgeable under cho-
sen message attack, and SE = (Encrypt,Decrypt) is (t, qen, ǫen) left-or-right se-
cure under chosen plaintext attack. Then WE is a (t′, qM , qD, qC , ǫ′, δ)-strong
watermarking scheme, where ǫ′ = 2ǫS + ǫen + ǫE, qM + qC ≤ min(qen, qS),
qM ≤ qEM , and qC ≤ qEC .

Remarks. We note that the scheme as written requires the Embed procedure to
be deterministic; this is without loss of generality because the shared symmetric
key between Mark and Detect can include a seed for a pseudorandom function
that is used to generate the random bits used by Embed in a deterministic way
from its arguments, without changing the security properties of the scheme.

We also note that if the distribution D has Shannon entropy less than k – the
length of strings embedded by E – then in principle the TTP can be removed
from this scheme. In this case, the marking scheme first losslessly compresses



the object O into a short string x of length less than k, and the string x is then
encrypted and authenticated using standard cryptographic techniques to get a
ciphertext c which is embedded into O. The detection scheme recovers c, checks
it for authenticity and if it passes, decrypts c to obtain x, then expands x to the
original object O before comparing it to the input object. Thus our TTP can be
seen as implementing a compression algorithm for unknown or incompressible
distributions D.

5 Strengthening Watermarks by Composition

Suppose we are given a watermarking scheme with known attacks that succeed at
insertion or removal of a watermark with high probability, for example 90%, but
retains some weak sense of security, in that it is not known how to defeat it with
probability 1. In this section, we show that this sense of security is essentially
enough for strong watermarking. Given an offline watermarking scheme W that
satisfies two weak properties, we can construct an (offline) strong watermarking
scheme in the sense of Section 3. The first property is that the scheme is secure in
this weak sense – every adversary fails to defeat the scheme with some constant
probability. The second property is that marking an object many times preserves
some similarity to the original.

As mentioned previously, we believe this results has both positive and nega-
tive applications. Many of the heuristic watermarking schemes in the literature
are broken, but frequently the known attacks do not succeed with probability 1.
Thus applying our amplification scheme could heuristically create schemes which
are, in some sense, secure “against known attacks.” On the other hand, our re-
sults show that in order to rule out even weakly secure watermarking schemes
for a given metric and distribution, it is sufficient to concentrate on showing the
impossibility of a strong watermarking scheme.

5.1 Weakly secure watermarking schemes

Our scheme will work by applying the Mark function to its own output several
times. Because our security notions depend on the probability distribution on the
inputs to Mark, we will need some assumption on the distribution of the outputs
of Mark. The strongest assumption is that these distributions are identical, but
in general this amounts to assuming that Mark is the identity function. Thus,
instead, we assume that the (weak) security of a watermark holds even if we
make some small distortions to an object before marking it. Formally, we say
that a randomized algorithm D is a (t, r)-perturbation of D if D runs in time t
and Pr[O ←R D;O′ ← D(O) : dM(O,O′) > r] is negligible. We will say that
our watermarking schemes are weakly secure for D if they are weakly secure for
any (t, r)-perturbation of D.

(Weak) security against removal. We define the removal advantage of an
adversary against a watermarking scheme to be the probability that an adversary



can produce, given a watermarked object drawn from a (t, r)-perturbation of D,
a similar object that is not marked. Formally, define

Advrm
W,D(A) = Pr[K ←W.WMGen(1k);O ←R D;O′ ←W.MarkK(D(O));

O′′ ← A(O′) : W.DetectK(O′′) = false ∧O′′ ∼δ O′] .

Then, we say that a watermark W is (t, ǫrm, δ,D, r)-secure against removal if for
every time-t adversary A, and every (t, r)-perturbation D of D, Advrm

W,D(A) ≤
ǫrm. Informally, this definition says that every adversary who runs in time
at most t fails to remove the watermark of an object drawn from a (t, r)-
perturbation of D with probability at least 1− ǫrm.

We remark that this experiment captures the intuitive notion of trying to
remove a watermark without damaging some challenge object, a common goal
of attacks on watermarking schemes found in the literature. We also note that
the goal of our scheme is to strengthen a watermark with only constant security
against removal – meaning that we explicitly allow a watermarking scheme that
can be removed, say, 99% of the time.
(Weak) Security against insertion. We informally define the insertion ad-
vantage of an adversary against a watermarking scheme to be the probability
that an adversary can produce, given a single watermarked object, another wa-
termarked object. Formally, define

Advins
W,D(A) = Pr[K ←WMGen(1k);O ← A(1k);O′ ←W.MarkK(O);

O′′ ← A(O′) : W.DetectK(O′′) = true ∧O′′ 6∼δ O′] .

Then, we say that a watermark W is (t, ǫins, δ)-secure against insertion if for ev-
ery time-t adversary A, Advins

W,D(A) ≤ ǫins. Informally, this definition says that
every adversary who runs in time t must fail to produce a (new) watermarked ob-
ject with probability at least 1− ǫins. We remark that security against insertion
is essentially an adversarial notion of the “false positive rate” of a watermark [2,
27]. We can now state the main result of this section; the proof depends on
several additional results proved in the remainder of the section:

Theorem 2. Suppose there exists a watermarking scheme W such that:

– W is ρ-preserving;
– W is both (t, ǫrm, δ,D, kO(1)ρ)-secure against removal and (t, ǫins, δ)-secure

against insertion; and
– ǫrm, ǫins are constants such that 4ǫins lg 1

ǫrm
< 1; and t = kω(1)

Then there exists a (D, t′, qM , 1, qD, ν, δ)-strong watermarking scheme W ′, where
t′ = kω(1) and ν = 1/kω(1). The scheme W ′ is kO(1)ρ-preserving.

Proof. The new watermark W ′ is constructed from W using the techniques de-
veloped in the remainder of this section: first the “alternating” composition
ALTℓ with ℓ = O(lg k) levels, from Section 5.3 is applied to W . By repeated
application of Theorem 3 the resulting scheme S(W ) is ν-secure against re-
moval and insertion, for negligible ν. Lemma 1 implies that this scheme is also



a (D, t′, qM , 1, qD, ν, δ)-strong watermark, for qM + qD = 1. To achieve arbi-
trary qM and qD, we construct the scheme S′(W ) described in Section 5.4 with
m = qM + qD. By Theorem 4 the resulting scheme is a (D, t′, qM , 1, qD, ν, δ)-
strong watermark.

5.2 Single-Property Amplification.

Let K = (K1,K2, . . . ,Km) be a set of independently chosen secret keys. We de-
fine MarkW

K
(O) := W.MarkKm

(W.MarkKm−1
(. . . W.MarkK1

(O) . . . )), i.e. MarkW
K

is the sequential marking of an object O with each secret key in the vector K.
We now have two choices for defining the DetectW

K
(O′) algorithm, each resulting

in a different watermarking scheme. Define the schemes as follows:

AND(m,W ).DetectK(O′) =
∧

1≤i≤m

W.DetectKi
(O′)

OR(m,W ).DetectK(O′) =
∨

1≤i≤m

W.DetectKi
(O′)

Intuitively, we expect that AND(m,W ) will improve the insertion security of
watermark W while impeding the removal security. This is because to insert a
watermark one must insert m copies of W , while to delete a watermark one need
only delete 1 out of m. Likewise, we intuitively would expect that OR(m,W )
will decrease the insertion security while increasing the removal security. We can
write this formally in the following theorem, whose proof is in [30].

Theorem 3. Let W be ρ-preserving, (t, ǫins, δ)-secure against insertion, and
(t, ǫrm, δ,D, r)-secure against removal. Then:

(a) OR(m,W ) is (t′,mǫins, δ −mρ) secure against insertion.
(b) AND(m,W ) is (t′,mǫrm, δ −mρ,D, r −mρ) secure against removal.

Where t′ = t−mTM −O(1) if TM is the time to mark an object. Furthermore,
for any q(k) ∈ kO(1),

(c) AND(m,W ) is (t′, ǫm
ins + 1/q, δ −mρ) secure against insertion.

(d) OR(m,W ) is (t′, ǫm
rm + 1/q, δ −mρ,D, r −mρ) secure against removal.

Where t′ = t/poly(q,m).

5.3 Simultaneous Amplification

Let W be a watermarking scheme with key space K and define the scheme
ALT(W ) with key space K4 by ALT(W ) = AND(2,OR(2,W )). Then by the previ-
ous theorem, if W is (kω(1), c/2, δ,D, r) secure against removal and (kω(1), d/4, δ)
secure against insertion, then ALT(W ) is (kω(1), c2/2, δ − 4ρ,D, r − 4ρ)-secure
against removal and (kω(1), d2/4, δ−4ρ)-secure against insertion. If we define the
scheme ALTℓ(W ) by ALT1(W ) = ALT(W ) and ALTℓ(W ) = ALT(ALTℓ−1(W )),



we see that ALTℓ(W ) is (kω(1), d2ℓ

/4, δ−4ℓρ)-secure against insertion and (kω(1),

c2ℓ

/2, δ − 4ℓρ,D, r − 4ℓρ)-secure against removal, for ℓ = O(log k). By setting
ℓ = ⌈log k⌉ and letting S(W ) = OR(2,ALTℓ(W )) we obtain a scheme that inserts
poly(k) marks such that any poly(k)-time adversary has negligible advantage for
both removal and insertion, if the original scheme is weakly secure against (for
example) subexponential time adversaries.

Intuitively, we can think of this scheme as building a tree of marking schemes
over the object O to be marked. By building the tree appropriately, alternating
AND and OR at each level, we can reduce both the insertion and deletion proba-
bilities for the resulting detection scheme. Each leaf of the tree corresponds to an
independently keyed insertion of a watermark. Suppose we have a depth t tree
comprising 2t independent keys. The top gate, an OR, will recursively compute
AND.Detect(O, k[1]...k[2t−1]) and AND.Detect(O, k[2t−1]...k[2t]) and return true
if at least one recursive branch returns true. OR is defined analogously. Alterna-
tively, from the bottom-up view, there is one object in which we may have embed-
ded n = 2t marks; we check if each mark is present and then compute a formula
based on these truth values to decide whether the composed mark is present.

We note that the full alternating binary tree only exponentially reduces the
insertion and removal probabilities if we start with ǫrm < 1/2 and ǫins < 1/4.
For many watermarking schemes in the literature, however, we might expect that
the insertion probability is low, say ǫins < 1/100, while the removal probability
is high, say ǫrm = 0.9. In this case, we can make the lowest level of the tree
consist of an OR of 20 marks to get ǫ′rm = 1/e2 < 1/2 and ǫ′ins < 1/5. We can
then build a binary tree on top of the resulting watermark.

It remains to show that the scheme S(W ) is correct, i.e. that S.DetectK

(S.MarkK(D)) = true except with negligible probability. Notice, however, that
S.Detect returns true if either its left branch or its right branch return true. But
the insertion of the marks in the right branch is just one particular instance of an
adversary (against the left branch) that returns an output that is distorted by
distance at most 4ℓρ from its input, so if δ > 4ℓρ, the probability that this “ad-
versary” succeeds in removing the mark inserted by the left branch is negligible.

5.4 Strong watermark security from insertion and removal security.

Notice that the definition of (t, ǫins, δ) security against insertion implies (D,
t, 1, 1, 0, ǫins, δ)-strong watermark security: any strong watermark adversary
A who makes one Mark∗ query and one Detect∗ query can be converted into
a weak insertion adversary B: B(1k) simply runs A until A makes a query to
Mark∗, say O, and outputs O; B(O′) returns O′ to A and outputs the object
O′′ that A queries to Detect∗. Since the list chalns is empty, submitting an
unmarked O′′ will give b = false and b′ = false, so A can only win by “in-
serting” a watermark. Additionally satisfying (t, ǫrm, δ,D, r)-security against re-
moval implies (D(D), t, 0, 1, 1, ǫ, δ) strong watermark security for any D that
perturbs D by at most r, because an adversary who makes only a single query
O′ ← Challenge∗(D(D)) can only win by querying Detect∗(O′′) such that:



– O′′ ∼ O′ and DetectK(O′′) = false; if this happens with probability greater
than ǫrm then the removal security of the scheme is contradicted.

– d(O′′, O′) > δ and DetectK(O′′) = true; if this happens with probability
greater than ǫins then the insertion security is violated: an insertion adver-
sary can always draw his challenge object O′ ← D(D).

This observation leads to the following lemma:

Lemma 1. If W is (t, ǫins, δ)-secure against insertion and (t, ǫrm, δ,D, r)-secure
against removal then W is a (D(D), t, qM , 1, qC , ǫins + ǫrm, δ)-strong watermark-
ing scheme, for any distortion function D ∈ time(t) that perturbs D by distance
at most r, and any qC ≤ 1− qM .

Suppose that we extend the definition of a strong watermark to allow Mark to
maintain a local state. Then we can generically increase the number of (mark and
challenge) queries we are secure against by a factor of n while also increasing the
running time of Detect by a factor of n as follows. We require that Mark′K keeps a
count, i, of the number of objects it has marked (say modulo n). When Mark′K(O)
marks a new object, it computes the entire set of keys to use as Ki = FK(i),
where F is a pseudorandom function of the appropriate output size, and then
calls MarkKi

(O). Then in Detect′K(O) we try K = FK(1), FK(2) . . . FK(n) and
output true if any of these watermarks is detected. This increases the insertion
probability by at most a factor of n. We make this more formal in the following
theorem, whose proof is in [30].

Theorem 4. Let W = (Mark,Detect) be a (D, t, qM , 1, 1 − qM , ǫwm, δ)-strong
watermarking scheme and let W ′ = (Mark′,Detect′) be a watermarking scheme
with the stateful Mark’ algorithm described above, and let F be a (t, n, ǫprf )-
pseudorandom function. Then W ′ is a (D, t, qM , 1, n−qM , nǫwm +ǫprf , δ)-strong
watermarking scheme.

6 Conclusions

In this paper we have initiated the scientific study of complexity-based security
of watermarking schemes. We define a notion of watermarking security based
on comparison to an ideal scheme, and give evidence that this is the right no-
tion of security for watermarks in two ways. First, we show that security in our
sense implies previous definitions of security, while the converse is not true. Sec-
ond, we have shown how to construct a watermark which is secure in our sense
from several weaker primitives, which seem to capture the goals of research in
watermarking primitives. Our intent is not to introduce new watermarking pro-
tocols, but to suggest that security in the “strong watermark” sense is the “right
definition”: if secure watermarks (in any sense) are feasible at all, then so are
strong watermarking schemes. A key question left open by our work, therefore, is
the construction of similarity-preserving strong watermarking schemes that are
provably-secure under standard cryptographic assumptions; even a construction
for a contrived metric space would be an interesting first step in this direction.
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