
Detecting Phone Theft Using Machine Learning
Xinyu Liu

UC Berkeley

xinyuliu@berkeley.edu

David Wagner
UC Berkeley

daw@cs.berkeley.edu

Serge Egelman
UC Berkeley/ICSI

egelman@cs.berkeley.edu

ABSTRACT

Millions of smartphones are stolen in the United States every year,

putting victims' personal information at risk since many users often

do not lock their phones. To protect individuals' smartphones and

the private data stored on them, we developed a system that

automatically detects pickpocket and grab-and-run theft, in which

a thief grabs the phone from a victim's hand then runs away. Our

system applies machine learning to smartphone accelerometer data

in order to detect possible theft incidents. Based on a field study

and simulated theft scenarios, we are able to detect all thefts at a

cost of 1 false alarm per week. Given that many smartphone users

refuse to enable screen locking mechanisms over complaints that it

takes too long to unlock their devices, our system could be used in

conjunction with these systems in order to drastically decrease the

number of times a user is asked to provide a lock code. That is, our

system could be used to prompt smartphone users for PINs or

passcodes only when theft events have been detected.

CCS Concepts

• Security and privacy ➝ Mobile and wireless security;

Biometrics;

Keywords

Usable security; machine learning; smartphone theft detection

1. INTRODUCTION
According to Consumer Reports, 2.1 million smartphones were

stolen in the United States in 2014 [4], and the Pew Research

Center's Internet & American Life Project reported in 2012 that

nearly one third of mobile phone users have experienced a lost or

stolen device [2]. People can lock their phones to mitigate the risks

of phone theft, but some find this inconvenient, as it requires

unlocking the phone every time it is needed. As a result, about 40\%

of smartphone users do not lock their phones, which allows thieves

to gain access to the victims' personal information–information that

most users underestimate the sensitivity of [7].

 Our goal is to increase the usability of phone locking, and

therefore its adoption, by only forcing users to provide unlock

codes when there is a reasonable chance that the device is being

used by someone other than the rightful owner. To that end, we

developed a method to automatically detect pickpocket and grab-

and-run smartphone theft by training a binary classifier to recognize

the movements that are specific to theft and use it to monitor

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.
ICISS '18, April 27–29, 2018, Jeju, Republic of Korea

© 2018 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM ISBN 978-1-4503-6421-8/18/04$15.00

https://doi.org/10.1145/3209914.3209923

accelerometer data in the background. When theft is detected, our

system can signal the device to lock the screen or take other actions.

Thus, our theft detector offers another layer of protection against

smartphone theft, as well as decreases the number of times that

legitimate users will be asked to explicitly unlock their device

screens under ordinary circumstances. Because our theft detection

software results in fewer explicit unlock prompts, it increases the

usability of current smartphone locking mechanisms, and is

therefore likely to increase overall adoption. Compared to post hoc

security software, like kill switches and remote erase, which

retroactively protects users' privacy, our system operates in real-

time and may therefore better protect users' private information.

 There are multiple ways that a phone might be stolen. We focus

specifically on grab-and-run theft, where the thief snatches the

phone out of the user's hand and runs away, and pickpocket theft,

where the thief steals the phone from the user's pocket or bag and

runs away. This creates an abrupt and unusual movement pattern,

which we show can be detected from analysis of accelerometer

sensor data. We do not attempt to detect other forms of theft, such

as where the phone is left unattended and the thief walks off with

it, or where the phone is lost or left behind somewhere.

Consequently, our scheme cannot offer comprehensive protection

against all forms of theft, but we hope that it will be useful

nonetheless.

 We measure the efficacy of our scheme by gathering two

datasets. First, we simulated three types of phone theft: grab-and-

run while the victim is standing still, grab-and-run while the victim

is walking at a constant speed, and pick-pocket theft. We collect

accelerometer sensor readings during the simulated thefts; these

serve as known positives. Secondly, we conducted a field study

where we collected 3 weeks of sensor readings from the phones of

53 participants during their everyday activities. No phone was

stolen during the field study, so this dataset serves as known

negatives. We use this to train a classifier and then evaluate its

detection rate and false positive rate. Our best classifier produces 1

false alarm per week on average, while detecting 100% of

simulated thefts.

 Our contributions are:

(1) We conducted a user study and collected a large dataset of

smartphone sensor data while devices were being used in

the real world.

(2) We devise features and methods to detect two common

types of theft, and we show that our system can detect

these types of thefts with few false positives.

2. RELATED WORK
Many researchers have studied using smartphone sensors for

continuous user authentication. The benefit of continuous user

authentication is that it happens unobtrusively, without requiring

any action from users. Continuous authentication could serve as a

mitigation for theft: if the phone can detect rapidly enough that it is

no longer being used by the rightful owner, it could lock itself to

prevent the thief from accessing sensitive data on the phone.

One approach is to use smartphone accelerometer data for gait

recognition. These systems often extract some features from the

sensor data and then apply machine learning. Derawi et al. achieved

an equal error rate of 20% [5]. “Equal error rate” is a measure of

accuracy where the system is tuned so the false accept rate and false

reject rates are equal, and then that error rate is reported. Primo et

al. show that accelerometer-based gait authentication is somewhat

dependent on the position in which the phone is held, which is a

challenge for deploying gait authentication outside of a laboratory

environment [13]. They showed how to infer the position of the

phone (in the person's hand vs. in a pocket) with 85% accuracy, and

they showed how to use this information to increase the accuracy

of user authentication to 70–80%. They do not report performance

as equal error rate. Juefei-Xu et al. show that the pace at which

people walk also affects the sensor readings, and it is possible to

improve accuracy by first identifying the pace at which the user is

walking, then using a model tailored towards that pace [10]. Their

system achieved an equal error rate of 4–8% (depending on the

pace); or a false reject rate of 0.5–5% at a false accept rate of 0.1%.

Kwapisz et al. generalized gait authentication to cover not just

walking but also jogging and ascending and descending stairs [11]

and achieved false reject rates of 10–15% at a false accept rate of

about 5%.

 It is not clear whether gait recognition is sufficient on its own for

deployable user authentication. One limitation is that it can only

attempt to authenticate the user while the user is walking; when the

user is still, it cannot infer user identity. Another limitation is that

the error rate is still fairly high: if the classifier is run continuously,

once per second, even a false reject rate as low as 0.5% will cause

hundreds or thousands of false rejections per week. Thus, gait

recognition might need to be combined with other methods to yield

a deployable defense against theft.

 Our work builds on the methods previous researchers have used

to process sensor data and extract features. The accelerometer

sensor provides raw data in the form of X, Y, Z accelerations; it is

useful to also compute the magnitude 𝑀 = √𝑋2 + 𝑌2 + 𝑍2 of the

acceleration, as that is independent of the direction of the

acceleration. Prior papers have used several methods for cleaning

the raw accelerometer data, including interpolation and re-sampling

to deal with irregularly sampled data and a weighted moving

average filter to mitigate sensor noise. These schemes typically

divide the resulting time series into windows, each window

containing about a second of sensor data. For instance, Primo et al.

used overlapping windows, with each window containing 100

samples and having an overlap of 50 samples with the next window;

Derawi et al. and Juefei-Xu et al. used non-overlapping windows,

which were about 1 second in width. Derawi et al. and Juefei-Xu et

al. used the sensor readings as the features, while Primo et al. and

Kwapisz et al. computed hand-crafted features from the readings,

where each feature records a summary statistic on the sensor

readings in the window (e.g., mean, minimum, maximum, standard

deviation, number of zero crossings, etc.).

 Feng et al. investigated using the unique way the user picks up

their phone as a biometric for user authentication [8]. They

achieved an equal error rate of 6–7%. They used the smartphone

accelerometer, gyroscope, and magnetometer; in our work, we

avoid the gyroscope sensor, as its power consumption is

significantly higher than the accelerometer, and therefore is

currently not a practical solution for continuous authentication.

 Mare et al. developed a continuous authentication system where

the user wears a smartwatch or bracelet, which is used to

authenticate the user to their computer [12]. Their continuous

authentication scheme works well and could plausibly be used to

authenticate to a smartphone, but it requires users to wear a

bracelet; in contrast, we seek solutions that do not require the user

to carry or wear any additional devices.

 The most closely related work is by Chang et al., who used the

way that each person took their phone out of their bag or pocket as

a form of biometric authentication [3]. They use accelerometer and

gyroscope data to detect when the user picks up their phone, and

then they apply dynamic time warping and boosting to determine

whether the pickup motion matches known templates from the

owner of the phone. Their system achieves a 10% false positive rate

and a 5.5% false negative rate, which are relatively high,

considering that users may pick up their phones dozens of times

each day.

 The prior work focuses on authenticating the user. In contrast,

we take a different approach: we attempt to detect the specific

motion pattern that occurs during a grab-and-run or pickpocket

theft. The benefit of biometric authentication is that it provides a

comprehensive way to detect theft, regardless of the way the phone

was stolen; however, as summarized above, the false positive rates

of existing schemes are fairly high. Our scheme is limited to

detecting two particular types of theft, but achieves far lower false

positive rates. Our classifier is also user-independent and does not

require obtaining training data from each user; we use the same

classifier for all users.

3. METHODOLOGY
In this section, we describe the data collection software, which we

used to gather positive and negative data for our training and test

sets as well as the feature extraction scheme, and other classifier

design decisions.

3.1 Data Collection

3.1.1 Software
We used an Android application to record data from the

smartphone's 3-axis accelerometer, which then encrypted it and

stored it in the cloud. We acquired sensor data at the highest

sampling rate supported by the phone using

SENSOR_DELAY_FASTEST [1]. On most devices, including the

one we used for the simulated theft experiment, the sampling rate

is 100 Hz.

3.1.2 Simulated Theft Experiment
Because data from real thefts is hard to obtain, we simulated three

types of common smartphone theft scenarios, based on campus

police alerts that we receive, with one researcher acting as a

smartphone user and another one playing the role of a thief. The

three theft scenarios are as follows:

(1) The user stands still and holds the phone with one hand

as she is using the device, for instance reading a text; the

thief approaches from behind, grabs the phone with both

hands and runs away in the forward direction.

(2) The user holds the phone in front of her with one hand

while walking at a constant speed; the thief approaches

from behind, grabs the phone with both hands and runs

away in the forward direction.

(3) The third scenario simulates pick-pocket thefts. The user

places the phone in the back pocket of their pants and

stands still; the thief approaches from behind, steals the

phone from user's pocket and runs away in the forward

direction.

We collect 40 instances of each scenario, for a total of 120 trials.

Data collection was split across four sessions, each consisting of 10

trials per scenario, with different researchers acting as the victim

and thief in these sessions. We ran the experiment on flat ground in

an open space, so the experiment was not interrupted. We also made

sure that the thief ran at least 40 feet after gaining possession of the

victim's phone. We used a Nexus 5X smartphone (InvenSense

MPU6515 embedded accelerometer) with Android version 7.1.1

for data collection in our simulated theft experiment. Figure 1 plots

one example of accelerometer readings from a single simulated

theft. We collected an additional set of 120 trials, 40 instances from

each scenario using a Nexus 6P smartphone with Android version

6.0.1 to demonstrate our classifier can generalize to different

smartphone models.

Figure 1. The X, Y, Z and magnitude of acceleration,

respectively, from one simulated theft instance.

Figure 2. The X, Y, Z and magnitude of acceleration,

respectively, during normal usage at an arbitrary time period.

3.1.3 Field Study
We performed a field study to gather data from ordinary

smartphone users while they perform everyday activities, including

walking, running, driving, possibly exercising, and anything else

that occurred during their lives over the field study period. We

obtained approval from the University of California, Berkeley IRB

(Institutional Review Board) for this study. The study was

conducted in the Bay Area of the United States from September to

December 2016. None of the participants experienced a phone theft

during the study interval, so we were able to use the accelerometer

data collected from the user study as negative samples for our

machine learning algorithms (i.e., instances of non-theft activity).

 We posted a recruitment advertisement on Craigslist in

September 2016. We only recruited participants who used an

Android smartphone with version 5.0 and above. After obtaining

their consent, we installed our data collection application on their

phones and collected data for a three-week period. The application

ran in the background and collected accelerometer sensor readings

continuously, 24 hours a day. We contacted participants weekly to

make sure their phones were functioning correctly and troubleshoot

any data collection issues. Each participant was paid $150 for their

participation.

 The study was divided across 3 rounds; each round lasted 3

consecutive weeks. A total of 55 participants were recruited, and

53 out of the 55 subjects completed the study. In the first round, 2

of the 18 participants did not complete the study. Detailed

demographic information about the participants of this user study

is listed in Table 1. In aggregate, they used 21 different smartphone

models from 6 different manufacturers and 8 different Android

versions. This ensures the dataset containing diverse devices, and

the classifiers are not specific to a particular type of smartphone or

Android version. We also asked participants how they typically

carried their phone, when it was not in their hands; 33 reported

keeping it in their pockets, 9 in their purses, 12 in multiple locations

(e.g., pocket or purse, pocket or backpack), and 1 did not respond.

During the study, the subjects carried their phones while

performing daily activities, for example walking, driving, running

and possibly exercising. Data from a wide variety of real-world

activities ensures the generalizability of the classifiers trained on it.

Table 1. Participants' demographic information.

 Male Female Age 20-

29

30-39 40+

R1 5 11 8 6 2

R2 10 8 7 7 4

R3 11 8 9 4 6

Total 26 27 24 17 12

3.2 Feature Extraction
Our theft scenarios all involved a sudden movement of the phone,

which causes a large acceleration. Therefore, as a first filtering step,

we filtered the data to focus on times near when a large motion

occurs. In particular, our classifier is activated when the magnitude

of acceleration 𝑀 exceeds 40 𝑚/𝑠2 . We extract a one-second

window before the activation time and a 𝑛-second window after the

activation time, compute features on each of these windows, and

use them for classification. We vary 𝑛 from 1 to 7 to obtain the best

classification accuracy. We chose a threshold of 40 𝑚/𝑠2 as all of

our simulated thefts experienced accelerations exceeding that

threshold when the phone was initially grabbed by the thief.

 We first identified 16 candidate features, 8 features for each of

the two windows. In particular, we computed the minimum,

maximum, mean, standard deviation, root mean square, arc length,

product of arc length and standard deviation, and mean absolute

value, each computed on the magnitude values (𝑀) within the

window. We chose to only compute these features on the magnitude

of the acceleration, and not the 𝑋, 𝑌and 𝑍 components, because the

magnitude is non-directional and thus more robust to changes in the

orientation of the phone. We then visualized the distribution of

these features for the two classes and applied feature selection

techniques to choose a subset of features that yield good

performance. We removed the minimum and mean absolute value

from the feature list because removing them did not affect the

performance of the classifiers. As a result, we extract a 12-

dimensional feature vector, 6 features from the before-window and

6 from the after-window, every time the detector is triggered.

 Let 𝑀1, … , 𝑀𝑘 denote the time series of acceleration magnitudes

within the window. The features are computed as follows:

• Maximum: the maximum value of the magnitude within

the window, i.e., max(𝑀1, … , 𝑀𝑘).

• Mean: the average value of magnitude in a window, i.e.,

�̅� = (𝑀1 + ⋯ + 𝑀𝑘)/𝑘.

• Standard deviation: the standard deviation of magnitude

values in a window, i.e., (∑ (𝑀𝑖 − �̅�)2𝑘

𝑖=1
)1/2/(𝑘 −

1)1/2.

• Root mean square: the RMS of magnitude values in a

window, i.e., (𝑀1
2 + ⋯ + 𝑀𝑘

2)1/2/ 𝑘1/2.

• Arc length: the average of the absolute differences

between all adjacent magnitude values in a window,

i.e., (|𝑀2 − 𝑀1| + |𝑀3 − 𝑀2| + ⋯ + |𝑀𝑘 − 𝑀𝑘−1|)/
(𝑘 − 1). Intuitively, this captures the average of the first

derivative of the acceleration.

• Product of arc length and standard deviation: the product

of the two feature values.

 Because the accelerometer sensor reports readings in the same

units on all Android phones, and because our features are relatively

simple, we believe these features capture fundamental, device-

independent characteristics of the motion rather than anything

specific to the particular device used for data capture (e.g., in

contrast to the hardware-based differences documented by Dey et

al. [6]).

 We obtained 120 positive instances from the 120 simulated thefts

collected on a Nexus 5X. After applying the 40 𝑚/𝑠2 threshold,

we obtained approximately 248,000 negative samples from the data

collected in the field study. We then applied Boolean classification

techniques to this data set. We also obtained an additional data set

of 120 positive instances from the 120 simulated thefts collected on

a Nexus 6P. We used this additional data set to test the

generalizability of our theft detector.

3.3 Machine Learning Algorithms
We evaluate three standard machine learning algorithms: linear

SVM, logistic regression and random forests. Because we have

many more negative samples than positive ones, we tried different

settings for class weights to weight positive instances more highly

than negative ones. We also evaluated different window sizes for

the after-window. We found that a 2-second after-window yielded

better accuracy than a 1-second after-window since 2-second

windows encapsulate more complete acceleration information

about the motions, and larger window sizes did not offer much

improvement. Therefore, all of our experiments use a 1-second

before-window and a 2-second after-window. We partitioned the

entire dataset, which consists of 120 positive samples and

approximately 248,000 negative samples, into training and test sets

with 7:3 ratio. Then we trained the classifiers on the training set and

reported the prediction results of the test set.

4. RESULTS
Among the three classifiers, logistic regression performs the best.

Confusion matrices for logistic regression, random forests, and a

linear SVM are shown in Table 2. The logistic regression classifier

has a false positive rate of 0.09%. Given that the field study

involved 53*3=159 person-weeks of data, and the logistic

regression would report 248,000*0.09%=223 false positives (the

number of samples extracted from the field study data times the

false positive rate). Thus, on average, users would receive

223/159≈1.4 false alarms every week, and a true positive rate of

100%. The random forests classifier has an even lower false

positive rate (≈1 false alarm per month), but only detects 60% of

the thefts.

 Only a small fraction of predicted positives will actually be theft,

but we expect this will be acceptable due to the relatively low cost

of false positives: it means users will have to unlock their phones

one extra time per week, which will likely be tolerable. We report

the false positive rate rather than precision, because the false

positive rate is easily interpretable and not sensitive to the rate at

which theft occurs. The precision is sensitive to the number of

simulated thefts included in the dataset, which might not match the

number of actual thefts that are likely to occur over a given period

of time.

 We also tested our classifiers on a set of 120 positive data points

collected using a Nexus 6P. A detection rate of 98.3% indicates that

our detector works on other smartphone models.

 To get a better understanding of why our classifier is successful,

we computed feature rankings to find the most predictive features.

For logistic regression, we used standardized coefficients as the

feature importance score: the score for feature 𝑖 is |𝛼𝑖| ∙ 𝜎𝑖, where

𝛼𝑖, is the coefficient for feature 𝑖 in the logistic regression model,

and 𝜎𝑖 is the standard deviation of feature 𝑖 in the training set. In

addition, we computed the 95% confidence intervals for all

standardized coefficients using 50 epochs of the entire data set. The

feature importance scores and their 95% confidence intervals for

the logistic regression classifier are listed in Table 3. The most

discriminative features are the root mean square and mean of the

before-window, the root mean square and mean of the after-

window, and the standard deviation of the after-window. Plotting a

histogram of feature values (see Figures 3 and 4), we can see that

those features do appear to provide good discrimination.

Table 2. Confusion matrices for a logistic regression classifier

(at top; with class weights 1:200), random forests classifier

(middle; class weights 1:5000), and a linear SVM classifier

(bottom; class weights 1:1000).

 Predicted Negative Predicted Positive

True Negative 74446 72

True Positive 0 37

 Predicted Negative Predicted Positive

True Negative 74503 15

True Positive 14 23

 Predicted Negative Predicted Positive

True Negative 74501 17

True Positive 17 20

Table 3. Feature importances and their 95% confidence

intervals for logistic regression. (b) denotes the features

extracted from the 1s window before the 40-spike; (a) denotes

the features extracted from the 2s window after the 40-spike.

Feature Feature Importance

Root mean square (b) 143.8786849 (± 0.08714717)

Mean (b) 129.8910092 (± 0.08033373)

Root mean square (a) 93.8382532 (± 0.04439512)

Mean (a) 88.1273891 (± 0.03972303)

Standard deviation (a) 66.7204655 (± 0.02228971)

Standard deviation (b) 47.7685313 (± 0.03349549)

Arc length (a) 27.3736785 (± 0.01463394)

Maximum (b) 2.73231469 (±0.00041407)

Arc length * SD (a) 2.69875036 (± 0.00097762)

Arc length (b) 1.16578948 (± 0.00855526)

Maximum (a) 0.05985700 (± 0.00065551)

Arc length * SD (b) 0.04950325 (± 0.00090281)

 We also rank the features for the random forests classifier using

scikit-learn's feature importance score, which estimates the relative

importance of the features by computing the expected fraction of

the samples they contribute to. Thus the higher in the tree, the more

important the feature is [14]. We also computed the 95%

confidence intervals for all feature importance scores using 50

epochs of the entire data set. The resulting feature importance

scores and their 95% confidence intervals for the random forests

classifier are listed in Table 4.

 To compare the performance of random forests and logistic

regression, we fine tuned the class weights for the logistic

regression classifier to lower its true positive rate until it is

approximately the same as the random forests classifier, then we

compared the number of false positive instances of the two

classifiers. We find that logistic regression has 14 false positive

instances at a 67% true positive rate (25 true positive instances),

while random forests has 15 false positive instances at a 62% true

positive rate (23 true positive instances). Thus the performance of

the two classifiers seems comparable in this regime. The advantage

of logistic regression is that we found adjusting class weights was

more effective at controlling the false-positive/false-negative

tradeoff for the logistic regression classifier. The Receiver

Operating Characteristic (ROC) curves for the logistic regression

and random forests classifiers are shown in Figure 5.

5. CONCLUSION
In this work, we demonstrate that accelerometer data is enough to

detect some common forms of smartphone theft, such as pickpocket

and grab-and-run, without sacrificing usability by inundating the

user with false alarms. It is remarkable that machine learning is so

effective and can detect 100% of our simulated thefts. We suspect

that this is because the kinds of thefts we consider here involve a

rapid jerking motion followed by the thief running away, which

induces a unique pattern in the accelerometer sensor readings.

Table 4. Feature importances and their 95% confidence

intervals for random forests. (b) denotes the features

extracted from the 1s window before the 40-spike; (a) denotes

the features extracted from the 2s window after the 40-spike.

Feature Feature Importance

Root mean square (a) 0.24251892 (± 0.00734018)

Mean (a) 0.19351276 (± 0.00685086)

Standard deviation (a) 0.17634030 (± 0.00601571)

Maximum (a) 0.10975278 (± 0.00480411)

Arc length * SD (a) 0.07541471 (± 0.00382659)

Arc length (a) 0.04821400 (±0.00264303)

Maximum (b) 0.04740376 (± 0.00172894)

Arc length * SD (b) 0.03291854 (± 0.00128944)

Standard deviation (b) 0.02828350 (± 0.00115971)

Arc length (b) 0.02072662 (± 0.00103551)

Root mean square (b) 0.01544474 (± 0.00078121)

Mean (b) 0.00946937 (± 0.00077147)

 We envision that a smartphone could run our classifier

continuously and automatically lock the phone whenever a theft is

suspected. We expect that the inconvenience of unlocking the

phone once more per week would be tolerable, and might not even

be noticed by users. If combined with other heuristics to reduce the

false positive rate further (e.g., the phone is not unlocked within a

short period after the suspected theft; the phone moves to some new

location it has never been before), it might be possible to notify the

owner or take other measures as well, when a theft is detected.

 As mentioned earlier, 40% of smartphone users do not lock their

phone with a PIN or passcode [7, 9], so currently thieves have full

access to the personal data of these users. We envision our solution

would help protect those users: if a suspected theft is detected, the

phone could lock itself so it requires a PIN or passcode to unlock;

this way, users would only need to enter a PIN or passcode about

once a week, rather than every time they want to use the phone. For

the 60% of smartphone users who do have a PIN or passcode

enabled, our scheme might have less benefit. Because the phone

can immediately detect the theft and lock itself, it prevents thieves

who grab the phone while it is unlocked from accessing the user's

data, but it is unnecessary against thieves who steal the phone while

it is locked (e.g., pickpocket theft). Our scheme might also be

helpful for finding the stolen phone: if a suspected theft is detected,

the phone could enable GPS, start tracking its location, upload its

location to a cloud server in real-time, and continue until the phone

is unlocked (if the user has not already enabled a “find my phone''

feature).

 We expect that our solution would have negligible impact on

battery life and phone performance. Modern phones support

batched accelerometer sensing, where the accelerometer hardware

buffers sensor readings, so the application CPU only has to wake

up to read sensor data when the buffer is full. As a result, it is

possible to record accelerometer sensor values at high sampling

rates with negligible power draw. Moreover, thanks to the pre-

filtering (the 40 𝑚/𝑠2 threshold), we only need to apply the

classifier on a tiny fraction of time windows (only about 10 times

Figure 3. Histogram for each of the 6 features for the 1-second

window before the 𝟒𝟎 𝒎/𝒔𝟐 spike. The features are listed in

the order presented in Section 3.2, e.g., the top histogram is

for the maximum. Red bars indicate thefts, and green bars

indicate non-theft windows.

Figure 5. ROC curves of logistic regression and random

forests. The x-axis is in logarithmic scale.

per hour on average), so the impact on battery life should be

negligible.

 The primary limitation of our work is that we work with

simulated thefts. It is difficult to obtain accelerometer data on actual

theft occurring in the wild, but perhaps a practical deployment

could obtain such data, and then use it to further train the classifiers.

 It may be possible to improve our results further by using other

sensors on the smartphone, such as the step counter. The biggest

open question is whether our methods can be extended to a more

diverse set of theft scenarios; we hope that our work will inspire

others to investigate this direction further.

Figure 4. Histogram of feature values in the 2-second window

after the 𝟒𝟎 𝒎/𝒔𝟐 spike.

6. ACKNOWLEDGMENTS
The authors would like to thank Prakash P. Bhasker and Micah J.

Sheller for providing us with the Android sensor monitoring

software, Jennifer Chen from Good Research for her assistance on

conducting the user study, and Irwin Reyes, David Fifield and

Michael McCoyd for giving feedback on our paper drafts. This

research was conducted at The Intel Science and Technology

Center for Secure Computing (http://scrub.cs.berkeley.edu/) at UC

Berkeley and was also supported by the National Science

Foundation under award CNS-1514457.

7. REFERENCES
[1] 2017. Android Developers Sensor Manager

https://developer.android.com/reference/android/hardware/Se

nsorManager.html.

[2] Jan Lauren Boyles and Aaron Smith and Mary Madden.

2012. Privacy and Data Management on Mobile Devices.

http://www.pewinternet.org/2012/09/05/privacy-and-data-

management-on-mobile-devices/ (September 5, 2012).

[3] Shan Chang and Ting Lu and Hui Song. 2016. SmartDog:

Real-time Detection of Smartphone Theft. In Internet of

Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom) and IEEE Smart Data

(SmartData), 2016 IEEE International Conference on. IEEE.

[4] Calla Deitrick. 2015. Smartphone thefts drop as kill switch

usage grows.

http://www.consumerreports.org/cro/news/2015/06/smartpho

ne-thefts-on-the-decline/index.htm (June 11, 2015).

[5] Mohammad O. Derawi and Claudia Nickel and Patrick Bours

and Christoph Busch. 2010. Unobtrusive User-

Authentication on Mobile Phones using Biometric Gait

Recognition. In Intelligent Information Hiding and

http://www.pewinternet.org/2012/09/05/privacy-and-data-management-on-mobile-devices/
http://www.pewinternet.org/2012/09/05/privacy-and-data-management-on-mobile-devices/
http://www.consumerreports.org/cro/news/2015/06/smartphone-thefts-on-the-decline/index.htm
http://www.consumerreports.org/cro/news/2015/06/smartphone-thefts-on-the-decline/index.htm

Multimedia Signal (IIH-MSP) Sixth International Conference

Processing. IEEE, 306-311

[6] Sanorita Dey and Nirupam Roy and Wenyuan Xu and Romit

Roy Choudhury and Srihari Nelakuditi. 2014. AccelPrint:

Imperfections of Accelerometers Make Smartphones

Trackable. In Proceedings of the 20th Annual Network and

Distributed System Security Symposium (NDSS ’14).

[7] Serge Egelman and Sakshi Jain and Rebecca S. Portnoff and

Kerwell Liao and Sunny Consolvo and David Wagner. 2014.

Are You Ready to Lock? Understanding User Motivations

for Smartphone Locking Behaviors. In Proceedings of 2014

ACM SIGSAC Conference on Computer and

Communications Security. ACM SIGSAC, 750-761.

[8] Tao Feng and Xi Zhao and Weidong Shi. 2013. Investigating

Mobile Device Picking-up Motion as a Novel Biometric

Modality. Biometrics: Theory, Applications and Systems

(BTAS), 2013 IEEE Sixth International Conference on. IEEE

[9] Harbach, Marian and De Luca, Alexander and Malkin,

Nathan and Egelman, Serge. 2016. Keep on Lockin' in the

Free World: A Multi-National Comparison of Smartphone

Locking. In Proceedings of 2016 CHI Conference on Human

Factors in Computing Systems (CHI ’16). ACM, New York,

NY, USA 4823-4827.

http://doi.acm.org/10.1145/2858036.2858273.

[10] Felix Juefei-Xu and Chandrasekhar Bhagavatula and Aaron

Jaech and Unni Prasad and Marios Savvides. 2012. Gait-ID

on the Move: Pace Independent Human Identification Using

Cell Phone Accelerometer Dynamics. In Biometrics: Theory,

Applications and Systems (BTAS), 2012 IEEE Fifth

International Conference on. IEEE.

[11] Jennifer R. Kwapisz and Gary M. Weiss and Samuel A.

Moore. 2010. Cell Phone-Based Biometric Identification. In

Biometrics: Theory Applications and Systems (BTAS), 2010

Fourth IEEE International Conference on. IEEE.

[12] Shrirang Mare and Andres Molina-Markham and Cory

Cornelius and Ronald Peterson and David Kotz. 2014.

ZEBRA: Zero-Effort Bilateral Recurring Authentication. In

Security and Privacy (SP), 2014 IEEE Symposium on. IEEE,

705-720.

[13] Abena Primo and Vir V. Phoha and Rajesh Kumar and

Abdul Serwadda. 2014. Context-Aware Active

Authentication Using Smartphone Accelerometer

Measurements. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops. IEEE,

98-105.

[14] scikit-learn. 2016. 3.2.4.3.1.

sklearn.ensemble.RandomForestClassifier. http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.Rando

mForestClassifier.html (2016).

http://doi.acm.org/10.1145/2858036.2858273
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Authors’ background
Your Name Title* Research Field Personal website

Xinyu Liu Research Assistant Computer Security

David Wagner Professor Computer Security,
systems security,
usable security, and
program analysis for
security

http://people.eecs.berkeley.edu/~daw/

Serge Egelman Research Scientist Usable Security and
Privacy

https://www.icsi.berkeley.edu/icsi/people/egelman

*This form helps us to understand your paper better, the form itself will not be published.

*Title can be chosen from: master student, Phd candidate, assistant professor, lecturer, senior lecture, associate
professor, full professor

	1. INTRODUCTION
	2. RELATED WORK
	3. METHODOLOGY
	3.1 Data Collection
	3.1.1 Software
	3.1.2 Simulated Theft Experiment
	3.1.3 Field Study

	3.2 Feature Extraction
	3.3 Machine Learning Algorithms

	4. RESULTS
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

