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ABSTRACT 

Millions of smartphones are stolen in the United States every year, 

putting victims' personal information at risk since many users often 

do not lock their phones. To protect individuals' smartphones and 

the private data stored on them, we developed a system that 

automatically detects pickpocket and grab-and-run theft, in which 

a thief grabs the phone from a victim's hand then runs away. Our 

system applies machine learning to smartphone accelerometer data 

in order to detect possible theft incidents. Based on a field study 

and simulated theft scenarios, we are able to detect all thefts at a 

cost of 1 false alarm per week. Given that many smartphone users 

refuse to enable screen locking mechanisms over complaints that it 

takes too long to unlock their devices, our system could be used in 

conjunction with these systems in order to drastically decrease the 

number of times a user is asked to provide a lock code. That is, our 

system could be used to prompt smartphone users for PINs or 

passcodes only when theft events have been detected. 
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• Security and privacy ➝ Mobile and wireless security; 

Biometrics; 
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1. INTRODUCTION 
According to Consumer Reports, 2.1 million smartphones were 

stolen in the United States in 2014 [4], and the Pew Research 

Center's Internet & American Life Project reported in 2012 that 

nearly one third of mobile phone users have experienced a lost or 

stolen device [2]. People can lock their phones to mitigate the risks 

of phone theft, but some find this inconvenient, as it requires 

unlocking the phone every time it is needed. As a result, about 40\% 

of smartphone users do not lock their phones, which allows thieves 

to gain access to the victims' personal information–information that 

most users underestimate the sensitivity of [7]. 

    Our goal is to increase the usability of phone locking, and 

therefore its adoption, by only forcing users to provide unlock 

codes when there is a reasonable chance that the device is being 

used by someone other than the rightful owner. To that end, we 

developed a method to automatically detect pickpocket and grab-

and-run smartphone theft by training a binary classifier to recognize 

the movements that are specific to theft and use it to monitor 
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accelerometer data in the background. When theft is detected, our 

system can signal the device to lock the screen or take other actions. 

Thus, our theft detector offers another layer of protection against 

smartphone theft, as well as decreases the number of times that 

legitimate users will be asked to explicitly unlock their device 

screens under ordinary circumstances. Because our theft detection 

software results in fewer explicit unlock prompts, it increases the 

usability of current smartphone locking mechanisms, and is 

therefore likely to increase overall adoption. Compared to post hoc 

security software, like kill switches and remote erase, which 

retroactively protects users' privacy, our system operates in real-

time and may therefore better protect users' private information. 

    There are multiple ways that a phone might be stolen. We focus 

specifically on grab-and-run theft, where the thief snatches the 

phone out of the user's hand and runs away, and pickpocket theft, 

where the thief steals the phone from the user's pocket or bag and 

runs away. This creates an abrupt and unusual movement pattern, 

which we show can be detected from analysis of accelerometer 

sensor data. We do not attempt to detect other forms of theft, such 

as where the phone is left unattended and the thief walks off with 

it, or where the phone is lost or left behind somewhere. 

Consequently, our scheme cannot offer comprehensive protection 

against all forms of theft, but we hope that it will be useful 

nonetheless. 

    We measure the efficacy of our scheme by gathering two 

datasets. First, we simulated three types of phone theft: grab-and-

run while the victim is standing still, grab-and-run while the victim 

is walking at a constant speed, and pick-pocket theft. We collect 

accelerometer sensor readings during the simulated thefts; these 

serve as known positives. Secondly, we conducted a field study 

where we collected 3 weeks of sensor readings from the phones of 

53 participants during their everyday activities. No phone was 

stolen during the field study, so this dataset serves as known 

negatives. We use this to train a classifier and then evaluate its 

detection rate and false positive rate. Our best classifier produces 1 

false alarm per week on average, while detecting 100% of 

simulated thefts. 

    Our contributions are: 

(1) We conducted a user study and collected a large dataset of 

smartphone sensor data while devices were being used in 

the real world. 

(2) We devise features and methods to detect two common 

types of theft, and we show that our system can detect 

these types of thefts with few false positives. 

 

2. RELATED WORK 
Many researchers have studied using smartphone sensors for 

continuous user authentication. The benefit of continuous user 

authentication is that it happens unobtrusively, without requiring 

any action from users. Continuous authentication could serve as a 

mitigation for theft: if the phone can detect rapidly enough that it is 

no longer being used by the rightful owner, it could lock itself to 

prevent the thief from accessing sensitive data on the phone. 



One approach is to use smartphone accelerometer data for gait 

recognition. These systems often extract some features from the 

sensor data and then apply machine learning. Derawi et al. achieved 

an equal error rate of 20% [5]. “Equal error rate” is a measure of 

accuracy where the system is tuned so the false accept rate and false 

reject rates are equal, and then that error rate is reported. Primo et 

al. show that accelerometer-based gait authentication is somewhat 

dependent on the position in which the phone is held, which is a 

challenge for deploying gait authentication outside of a laboratory 

environment [13]. They showed how to infer the position of the 

phone (in the person's hand vs. in a pocket) with 85% accuracy, and 

they showed how to use this information to increase the accuracy 

of user authentication to 70–80%. They do not report performance 

as equal error rate. Juefei-Xu et al. show that the pace at which 

people walk also affects the sensor readings, and it is possible to 

improve accuracy by first identifying the pace at which the user is 

walking, then using a model tailored towards that pace [10]. Their 

system achieved an equal error rate of 4–8% (depending on the 

pace); or a false reject rate of 0.5–5% at a false accept rate of 0.1%. 

Kwapisz et al. generalized gait authentication to cover not just 

walking but also jogging and ascending and descending stairs [11] 

and achieved false reject rates of 10–15% at a false accept rate of 

about 5%. 

    It is not clear whether gait recognition is sufficient on its own for 

deployable user authentication. One limitation is that it can only 

attempt to authenticate the user while the user is walking; when the 

user is still, it cannot infer user identity. Another limitation is that 

the error rate is still fairly high: if the classifier is run continuously, 

once per second, even a false reject rate as low as 0.5% will cause 

hundreds or thousands of false rejections per week. Thus, gait 

recognition might need to be combined with other methods to yield 

a deployable defense against theft. 

    Our work builds on the methods previous researchers have used 

to process sensor data and extract features. The accelerometer 

sensor provides raw data in the form of X, Y, Z accelerations; it is 

useful to also compute the magnitude 𝑀 = √𝑋2 + 𝑌2 + 𝑍2 of the 

acceleration, as that is independent of the direction of the 

acceleration. Prior papers have used several methods for cleaning 

the raw accelerometer data, including interpolation and re-sampling 

to deal with irregularly sampled data and a weighted moving 

average filter to mitigate sensor noise. These schemes typically 

divide the resulting time series into windows, each window 

containing about a second of sensor data. For instance, Primo et al. 

used overlapping windows, with each window containing 100 

samples and having an overlap of 50 samples with the next window; 

Derawi et al. and Juefei-Xu et al. used non-overlapping windows, 

which were about 1 second in width. Derawi et al. and Juefei-Xu et 

al. used the sensor readings as the features, while Primo et al. and 

Kwapisz et al. computed hand-crafted features from the readings, 

where each feature records a summary statistic on the sensor 

readings in the window (e.g., mean, minimum, maximum, standard 

deviation, number of zero crossings, etc.).  

    Feng et al. investigated using the unique way the user picks up 

their phone as a biometric for user authentication [8]. They 

achieved an equal error rate of 6–7%. They used the smartphone 

accelerometer, gyroscope, and magnetometer; in our work, we 

avoid the gyroscope sensor, as its power consumption is 

significantly higher than the accelerometer, and therefore is 

currently not a practical solution for continuous authentication. 

    Mare et al. developed a continuous authentication system where 

the user wears a smartwatch or bracelet, which is used to 

authenticate the user to their computer [12]. Their continuous 

authentication scheme works well and could plausibly be used to 

authenticate to a smartphone, but it requires users to wear a 

bracelet; in contrast, we seek solutions that do not require the user 

to carry or wear any additional devices.  

    The most closely related work is by Chang et al., who used the 

way that each person took their phone out of their bag or pocket as 

a form of biometric authentication [3]. They use accelerometer and 

gyroscope data to detect when the user picks up their phone, and 

then they apply dynamic time warping and boosting to determine 

whether the pickup motion matches known templates from the 

owner of the phone. Their system achieves a 10% false positive rate 

and a 5.5% false negative rate, which are relatively high, 

considering that users may pick up their phones dozens of times 

each day. 

    The prior work focuses on authenticating the user. In contrast, 

we take a different approach: we attempt to detect the specific 

motion pattern that occurs during a grab-and-run or pickpocket 

theft. The benefit of biometric authentication is that it provides a 

comprehensive way to detect theft, regardless of the way the phone 

was stolen; however, as summarized above, the false positive rates 

of existing schemes are fairly high. Our scheme is limited to 

detecting two particular types of theft, but achieves far lower false 

positive rates. Our classifier is also user-independent and does not 

require obtaining training data from each user; we use the same 

classifier for all users. 

 

3. METHODOLOGY 
In this section, we describe the data collection software, which we 

used to gather positive and negative data for our training and test 

sets as well as the feature extraction scheme, and other classifier 

design decisions. 

3.1 Data Collection 

3.1.1 Software 
We used an Android application to record data from the 

smartphone's 3-axis accelerometer, which then encrypted it and 

stored it in the cloud. We acquired sensor data at the highest 

sampling rate supported by the phone using 

SENSOR_DELAY_FASTEST [1]. On most devices, including the 

one we used for the simulated theft experiment, the sampling rate 

is 100 Hz. 

3.1.2 Simulated Theft Experiment 
Because data from real thefts is hard to obtain, we simulated three 

types of common smartphone theft scenarios, based on campus 

police alerts that we receive, with one researcher acting as a 

smartphone user and another one playing the role of a thief. The 

three theft scenarios are as follows: 

(1) The user stands still and holds the phone with one hand 

as she is using the device, for instance reading a text; the 

thief approaches from behind, grabs the phone with both 

hands and runs away in the forward direction. 

(2) The user holds the phone in front of her with one hand 

while walking at a constant speed; the thief approaches 

from behind, grabs the phone with both hands and runs 

away in the forward direction. 

(3) The third scenario simulates pick-pocket thefts. The user 

places the phone in the back pocket of their pants and 



stands still; the thief approaches from behind, steals the 

phone from user's pocket and runs away in the forward 

direction. 

We collect 40 instances of each scenario, for a total of 120 trials. 

Data collection was split across four sessions, each consisting of 10 

trials per scenario, with different researchers acting as the victim 

and thief in these sessions. We ran the experiment on flat ground in 

an open space, so the experiment was not interrupted. We also made 

sure that the thief ran at least 40 feet after gaining possession of the 

victim's phone. We used a Nexus 5X smartphone (InvenSense 

MPU6515 embedded accelerometer) with Android version 7.1.1 

for data collection in our simulated theft experiment. Figure 1 plots 

one example of accelerometer readings from a single simulated 

theft. We collected an additional set of 120 trials, 40 instances from 

each scenario using a Nexus 6P smartphone with Android version 

6.0.1 to demonstrate our classifier can generalize to different 

smartphone models. 

 

Figure 1. The X, Y, Z and magnitude of acceleration, 

respectively, from one simulated theft instance. 

 

Figure 2. The X, Y, Z and magnitude of acceleration, 

respectively, during normal usage at an arbitrary time period. 

3.1.3 Field Study 
We performed a field study to gather data from ordinary 

smartphone users while they perform everyday activities, including 

walking, running, driving, possibly exercising, and anything else 

that occurred during their lives over the field study period. We 

obtained approval from the University of California, Berkeley IRB 

(Institutional Review Board) for this study. The study was 

conducted in the Bay Area of the United States from September to 

December 2016. None of the participants experienced a phone theft 

during the study interval, so we were able to use the accelerometer 

data collected from the user study as negative samples for our 

machine learning algorithms (i.e., instances of non-theft activity). 

    We posted a recruitment advertisement on Craigslist in 

September 2016. We only recruited participants who used an 

Android smartphone with version 5.0 and above. After obtaining 

their consent, we installed our data collection application on their 

phones and collected data for a three-week period. The application 

ran in the background and collected accelerometer sensor readings 

continuously, 24 hours a day. We contacted participants weekly to 

make sure their phones were functioning correctly and troubleshoot 

any data collection issues. Each participant was paid $150 for their 

participation. 

    The study was divided across 3 rounds; each round lasted 3 

consecutive weeks. A total of 55 participants were recruited, and 

53 out of the 55 subjects completed the study. In the first round, 2 

of the 18 participants did not complete the study. Detailed 

demographic information about the participants of this user study 

is listed in Table 1. In aggregate, they used 21 different smartphone 

models from 6 different manufacturers and 8 different Android 

versions. This ensures the dataset containing diverse devices, and 

the classifiers are not specific to a particular type of smartphone or 

Android version. We also asked participants how they typically 

carried their phone, when it was not in their hands; 33 reported 

keeping it in their pockets, 9 in their purses, 12 in multiple locations 

(e.g., pocket or purse, pocket or backpack), and 1 did not respond. 

During the study, the subjects carried their phones while 

performing daily activities, for example walking, driving, running 

and possibly exercising. Data from a wide variety of real-world 

activities ensures the generalizability of the classifiers trained on it. 

Table 1. Participants' demographic information. 

 Male Female Age 20-

29 

30-39 40+ 

R1 5 11 8 6 2 

R2 10 8 7 7 4 

R3 11 8 9 4 6 

Total 26 27 24 17 12 

 

3.2 Feature Extraction 
Our theft scenarios all involved a sudden movement of the phone, 

which causes a large acceleration. Therefore, as a first filtering step, 

we filtered the data to focus on times near when a large motion 

occurs. In particular, our classifier is activated when the magnitude 

of acceleration 𝑀  exceeds 40 𝑚/𝑠2 . We extract a one-second 

window before the activation time and a 𝑛-second window after the 

activation time, compute features on each of these windows, and 

use them for classification. We vary 𝑛 from 1 to 7 to obtain the best 

classification accuracy. We chose a threshold of 40 𝑚/𝑠2 as all of 

our simulated thefts experienced accelerations exceeding that 

threshold when the phone was initially grabbed by the thief. 

    We first identified 16 candidate features, 8 features for each of 

the two windows. In particular, we computed the minimum, 

maximum, mean, standard deviation, root mean square, arc length, 

product of arc length and standard deviation, and mean absolute 

value, each computed on the magnitude values ( 𝑀 ) within the 

window. We chose to only compute these features on the magnitude 

of the acceleration, and not the 𝑋, 𝑌and 𝑍 components, because the 

magnitude is non-directional and thus more robust to changes in the 



orientation of the phone. We then visualized the distribution of 

these features for the two classes and applied feature selection 

techniques to choose a subset of features that yield good 

performance. We removed the minimum and mean absolute value 

from the feature list because removing them did not affect the 

performance of the classifiers. As a result, we extract a 12-

dimensional feature vector, 6 features from the before-window and 

6 from the after-window, every time the detector is triggered. 

    Let 𝑀1, … , 𝑀𝑘  denote the time series of acceleration magnitudes 

within the window. The features are computed as follows: 

• Maximum: the maximum value of the magnitude within 

the window, i.e., max(𝑀1, … , 𝑀𝑘). 

• Mean: the average value of magnitude in a window, i.e., 

�̅� =  (𝑀1 + ⋯ + 𝑀𝑘)/𝑘. 

• Standard deviation: the standard deviation of magnitude 

values in a window, i.e., (∑ (𝑀𝑖 −  �̅�)2𝑘

𝑖=1
)1/2/(𝑘 −

1)1/2. 

• Root mean square: the RMS of magnitude values in a 

window, i.e., (𝑀1
2 + ⋯ +  𝑀𝑘

2)1/2/ 𝑘1/2. 

• Arc length: the average of the absolute differences 

between all adjacent magnitude values in a window, 

i.e.,  (|𝑀2 − 𝑀1| + |𝑀3 − 𝑀2| + ⋯ + |𝑀𝑘 − 𝑀𝑘−1|)/
(𝑘 − 1). Intuitively, this captures the average of the first 

derivative of the acceleration. 

• Product of arc length and standard deviation: the product 

of the two feature values. 

    Because the accelerometer sensor reports readings in the same 

units on all Android phones, and because our features are relatively 

simple, we believe these features capture fundamental, device-

independent characteristics of the motion rather than anything 

specific to the particular device used for data capture (e.g., in 

contrast to the hardware-based differences documented by Dey et 

al. [6]). 

    We obtained 120 positive instances from the 120 simulated thefts 

collected on a Nexus 5X. After applying the 40 𝑚/𝑠2  threshold, 

we obtained approximately 248,000 negative samples from the data 

collected in the field study. We then applied Boolean classification 

techniques to this data set. We also obtained an additional data set 

of 120 positive instances from the 120 simulated thefts collected on 

a Nexus 6P. We used this additional data set to test the 

generalizability of our theft detector. 

3.3 Machine Learning Algorithms 
We evaluate three standard machine learning algorithms: linear 

SVM, logistic regression and random forests. Because we have 

many more negative samples than positive ones, we tried different 

settings for class weights to weight positive instances more highly 

than negative ones. We also evaluated different window sizes for 

the after-window. We found that a 2-second after-window yielded 

better accuracy than a 1-second after-window since 2-second 

windows encapsulate more complete acceleration information 

about the motions, and larger window sizes did not offer much 

improvement. Therefore, all of our experiments use a 1-second 

before-window and a 2-second after-window. We partitioned the 

entire dataset, which consists of 120 positive samples and 

approximately 248,000 negative samples, into training and test sets 

with 7:3 ratio. Then we trained the classifiers on the training set and 

reported the prediction results of the test set. 

 

4. RESULTS 
Among the three classifiers, logistic regression performs the best. 

Confusion matrices for logistic regression, random forests, and a 

linear SVM are shown in Table 2. The logistic regression classifier 

has a false positive rate of 0.09%. Given that the field study 

involved 53*3=159 person-weeks of data, and the logistic 

regression would report 248,000*0.09%=223 false positives (the 

number of samples extracted from the field study data times the 

false positive rate). Thus, on average, users would receive 

223/159≈1.4 false alarms every week, and a true positive rate of 

100%. The random forests classifier has an even lower false 

positive rate (≈1 false alarm per month), but only detects 60% of 

the thefts. 

    Only a small fraction of predicted positives will actually be theft, 

but we expect this will be acceptable due to the relatively low cost 

of false positives: it means users will have to unlock their phones 

one extra time per week, which will likely be tolerable. We report 

the false positive rate rather than precision, because the false 

positive rate is easily interpretable and not sensitive to the rate at 

which theft occurs. The precision is sensitive to the number of 

simulated thefts included in the dataset, which might not match the 

number of actual thefts that are likely to occur over a given period 

of time. 

    We also tested our classifiers on a set of 120 positive data points 

collected using a Nexus 6P. A detection rate of 98.3% indicates that 

our detector works on other smartphone models. 

    To get a better understanding of why our classifier is successful, 

we computed feature rankings to find the most predictive features. 

For logistic regression, we used standardized coefficients as the 

feature importance score: the score for feature 𝑖 is |𝛼𝑖| ∙ 𝜎𝑖, where 

𝛼𝑖, is the coefficient for feature 𝑖 in the logistic regression model, 

and 𝜎𝑖 is the standard deviation of feature 𝑖 in the training set. In 

addition, we computed the 95% confidence intervals for all 

standardized coefficients using 50 epochs of the entire data set. The 

feature importance scores and their 95% confidence intervals for 

the logistic regression classifier are listed in Table 3. The most 

discriminative features are the root mean square and mean of the 

before-window, the root mean square and mean of the after-

window, and the standard deviation of the after-window. Plotting a 

histogram of feature values (see Figures 3 and 4), we can see that 

those features do appear to provide good discrimination. 

Table 2. Confusion matrices for a logistic regression classifier 

(at top; with class weights 1:200), random forests classifier 

(middle; class weights 1:5000), and a linear SVM classifier 

(bottom; class weights 1:1000). 

 Predicted Negative Predicted Positive 

True Negative 74446 72 

True Positive 0 37 
 

 Predicted Negative Predicted Positive 

True Negative 74503 15 

True Positive 14 23 
 

 Predicted Negative Predicted Positive 

True Negative 74501 17 

True Positive 17 20 

 



Table 3. Feature importances and their 95% confidence 

intervals for logistic regression. (b) denotes the features 

extracted from the 1s window before the 40-spike; (a) denotes 

the features extracted from the 2s window after the 40-spike. 

Feature Feature Importance 

Root mean square (b) 143.8786849 (± 0.08714717) 

Mean (b) 129.8910092 (± 0.08033373) 

Root mean square (a)   93.8382532 (± 0.04439512) 

Mean (a)   88.1273891 (± 0.03972303) 

Standard deviation (a)   66.7204655 (± 0.02228971) 

Standard deviation (b)   47.7685313 (± 0.03349549) 

Arc length (a)   27.3736785 (± 0.01463394) 

Maximum (b)     2.73231469 (±0.00041407) 

Arc length * SD (a)     2.69875036 (± 0.00097762) 

Arc length (b)     1.16578948 (± 0.00855526) 

Maximum (a)     0.05985700 (± 0.00065551) 

Arc length * SD (b)     0.04950325 (± 0.00090281) 

 

    We also rank the features for the random forests classifier using 

scikit-learn's feature importance score, which estimates the relative 

importance of the features by computing the expected fraction of 

the samples they contribute to. Thus the higher in the tree, the more 

important the feature is [14]. We also computed the 95% 

confidence intervals for all feature importance scores using 50 

epochs of the entire data set. The resulting feature importance 

scores and their 95% confidence intervals for the random forests 

classifier are listed in Table 4. 

    To compare the performance of random forests and logistic 

regression, we fine tuned the class weights for the logistic 

regression classifier to lower its true positive rate until it is 

approximately the same as the random forests classifier, then we 

compared the number of false positive instances of the two 

classifiers. We find that logistic regression has 14 false positive 

instances at a 67% true positive rate (25 true positive instances), 

while random forests has 15 false positive instances at a 62% true 

positive rate (23 true positive instances). Thus the performance of 

the two classifiers seems comparable in this regime. The advantage 

of logistic regression is that we found adjusting class weights was 

more effective at controlling the false-positive/false-negative 

tradeoff for the logistic regression classifier. The Receiver 

Operating Characteristic (ROC) curves for the logistic regression 

and random forests classifiers are shown in Figure 5. 

5. CONCLUSION 
In this work, we demonstrate that accelerometer data is enough to 

detect some common forms of smartphone theft, such as pickpocket 

and grab-and-run, without sacrificing usability by inundating the 

user with false alarms. It is remarkable that machine learning is so 

effective and can detect 100% of our simulated thefts. We suspect 

that this is because the kinds of thefts we consider here involve a 

rapid jerking motion followed by the thief running away, which 

induces a unique pattern in the accelerometer sensor readings. 

 

Table 4. Feature importances and their 95% confidence 

intervals for random forests. (b) denotes the features 

extracted from the 1s window before the 40-spike; (a) denotes 

the features extracted from the 2s window after the 40-spike. 

Feature Feature Importance 

Root mean square (a) 0.24251892 (± 0.00734018) 

Mean (a) 0.19351276 (± 0.00685086) 

Standard deviation (a) 0.17634030 (± 0.00601571) 

Maximum (a) 0.10975278 (± 0.00480411) 

Arc length * SD (a) 0.07541471 (± 0.00382659) 

Arc length (a) 0.04821400 (±0.00264303) 

Maximum (b) 0.04740376 (± 0.00172894) 

Arc length * SD (b) 0.03291854 (± 0.00128944) 

Standard deviation (b) 0.02828350 (± 0.00115971) 

Arc length (b) 0.02072662 (± 0.00103551) 

Root mean square (b) 0.01544474 (± 0.00078121) 

Mean (b) 0.00946937 (± 0.00077147) 

 
    We envision that a smartphone could run our classifier 

continuously and automatically lock the phone whenever a theft is 

suspected. We expect that the inconvenience of unlocking the 

phone once more per week would be tolerable, and might not even 

be noticed by users. If combined with other heuristics to reduce the 

false positive rate further (e.g., the phone is not unlocked within a 

short period after the suspected theft; the phone moves to some new 

location it has never been before), it might be possible to notify the 

owner or take other measures as well, when a theft is detected. 

    As mentioned earlier, 40% of smartphone users do not lock their 

phone with a PIN or passcode [7, 9], so currently thieves have full 

access to the personal data of these users. We envision our solution 

would help protect those users: if a suspected theft is detected, the 

phone could lock itself so it requires a PIN or passcode to unlock; 

this way, users would only need to enter a PIN or passcode about 

once a week, rather than every time they want to use the phone. For 

the 60% of smartphone users who do have a PIN or passcode 

enabled, our scheme might have less benefit. Because the phone 

can immediately detect the theft and lock itself, it prevents thieves 

who grab the phone while it is unlocked from accessing the user's 

data, but it is unnecessary against thieves who steal the phone while 

it is locked (e.g., pickpocket theft). Our scheme might also be 

helpful for finding the stolen phone: if a suspected theft is detected, 

the phone could enable GPS, start tracking its location, upload its 

location to a cloud server in real-time, and continue until the phone 

is unlocked (if the user has not already enabled a “find my phone'' 

feature). 

    We expect that our solution would have negligible impact on 

battery life and phone performance. Modern phones support 

batched accelerometer sensing, where the accelerometer hardware 

buffers sensor readings, so the application CPU only has to wake 

up to read sensor data when the buffer is full. As a result, it is 

possible to record accelerometer sensor values at high sampling 

rates with negligible power draw. Moreover, thanks to the pre-

filtering (the 40 𝑚/𝑠2  threshold), we only need to apply the 

classifier on a tiny fraction of time windows (only about 10 times  



 

Figure 3. Histogram for each of the 6 features for the 1-second 

window before the 𝟒𝟎 𝒎/𝒔𝟐 spike.  The features are listed in 

the order presented in Section 3.2, e.g., the top histogram is 

for the maximum.  Red bars indicate thefts, and green bars 

indicate non-theft windows. 

 

Figure 5. ROC curves of logistic regression and random 

forests. The x-axis is in logarithmic scale. 

per hour on average), so the impact on battery life should be 

negligible.  

    The primary limitation of our work is that we work with 

simulated thefts. It is difficult to obtain accelerometer data on actual 

theft occurring in the wild, but perhaps a practical deployment 

could obtain such data, and then use it to further train the classifiers.  

    It may be possible to improve our results further by using other 

sensors on the smartphone, such as the step counter. The biggest 

open question is whether our methods can be extended to a more 

diverse set of theft scenarios; we hope that our work will inspire 

others to investigate this direction further. 

 

 

Figure 4. Histogram of feature values in the 2-second window 

after the 𝟒𝟎 𝒎/𝒔𝟐 spike. 
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