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ABSTRACT
The problem of adversarial examples, evasion attacks on machine
learning classifiers, has proven extremely difficult to solve. This is
true even in the black-box threat model, as is the case in many prac-
tical settings. Here, the classifier is hosted as a remote service and
the adversary does not have direct access to the model parameters.

This paper argues that in such settings, defenders have a larger
space of actions than previously studied. Specifically, we deviate
from the implicit assumption made by prior work that a defense
must be a stateless function that operates on individual examples,
and evaluate the space of stateful defenses.

We develop a defense designed to detect the process of generat-
ing adversarial examples. By keeping a history of the past queries, a
defender can try to identify when a sequence of queries appears to
be for the purpose of generating an adversarial example. We then
introduce query blinding, a new class of attacks designed to bypass
defenses that rely on such a defense approach. We believe that ex-
panding the study of adversarial examples from stateless classifiers
to stateful systems is not only more realistic for many black-box
settings, but also gives the defender a much-needed advantage in
responding to the adversary.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Comput-
ing methodologies → Neural networks; Computer vision.
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1 INTRODUCTION
Defending neural networks against adversarial examples has proven
to be extremely difficult. Most published defenses have been found
to have significant flaws [2, 9], and even the few defenses that have
withstood validation offer only partial robustness [30]. Adversarial
examples can even be generated in a fully black-box threat model,
in which an adversary can only query the model and receive the
predicted classification as output. While there are domains where
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the adversary has white-box access to a deployed neural network,
in many production environments where neural networks are de-
ployed, the user can only query the classifier and observe the output.
For example, services such as Clarifai [14] and Google Cloud Vi-
sion AI [21] offer image classification APIs where users can submit
images and receive only the label of that image.

This paper studies the problem of detecting the generation of
adversarial examples, as opposed to trying to (statelessly) detect
whether or not any individual input is malicious—which has proven
to be difficult [9]. We consider the task of identifying the sequence of
queries made to the classifier when creating an adversarial example.
Based on the observation that existing black-box attacks make
a sequence of highly self-similar queries (i.e., each query in the
sequence is similar to prior queries in the sequence), we develop a
defense that uses a similarity-detector neural network to identify
such query patterns, and find that the existing state-of-the-art black-
box attack algorithms can be detected through this strategy. Our
defense composes with existing defenses for defense-in-depth.

Then, we develop the first adaptive attacks against stateful de-
fenses and evaluate the robustness of the proposed defense in the
practical use case of image classification APIs. We propose query
blinding, a general strategy for attacking defenses which moni-
tors the sequence of queries in order to detect adversarial example
generation. Query blinding attacks pre-process each input with
a blinding function before querying the classifier, so that (1) the
blinded inputs match benign data patterns, but (2) it is possible
to deduce the classifier’s output from these queries. We validate
the efficiacy of query blinding by showing it breaks PRADA (Euro
S&P’19) [25]—a stateful defense to model stealing attacks. We show
that our stateful defense remains secure against query blinding.

Given the difficulty in defending or detecting attacks statelessly,
we believe that this new research direction—stateful methods for
detecting black-box attacks—presents renewed hope for defending
against adversarial example attacks in the black-box threat model.

We make the following contributions:

• We propose a new class of adversarial example defenses:
stateful detection defenses.

• We design and evaluate a defense in this category, and find it
is effective at detecting existing attacks and is hard to evade
even when the attacker adapts the attack approach.

• We introduce query blinding, a general strategy that can be
used to attack stateful detection defenses.

• We release the source-code for our defense and attacks at
https://github.com/schoyc/blackbox-detection.

2 BACKGROUND & PROBLEM STATEMENT
This paper studies evasion attacks on neural networks [4, 35]. Fol-
lowing most prior work on the space of adversarial examples [2],
we evaluate on image classifiers. Images are represented as ℎ ·𝑤 · 𝑐
dimensional vectors (with height ℎ, width𝑤 , and 𝑐 color channels).
In this paper we use ℓ∞ distance as the metric ∥·∥ for measuring
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adversarial distortions; this is the most common metric used in the
space of images [19]. Here, ℓ∞ (𝑥, 𝑥 ′) = max𝑖 |𝑥𝑖 − 𝑥 ′

𝑖
|, the maxi-

mum difference between any component. We expect our results
will naturally extend to other ℓ𝑝 -based metrics.

Threat model. We defend against hard-label black-box attacks,
where an adversary can only query a model; the parameters are
unavailable. For example, a machine-learning-as-a-service provider
might allow users to query a model after creating an account, but
not allow downloading the model. Under this threat model, we aim
to increase the difficulty for attackers to craft adversarial examples.
While an attacker can query the model any number of times in
trying to generate an adversarial example, our goal is to detect such
attacks before they are successful.

We focus on an account-oriented setting, where usersmust create
an account before they can query the model. Attackers might be
able to create as many accounts as they wish, but there is a cost
associated with creating each account (e.g., linking to a valid credit
card and email address, paying an account fee, etc.).

In our scheme, the attacker’s account is cancelled as soon as
an attack-in-progress is detected, requiring the attacker to create
a new account at that point. A key metric for the effectiveness
of our defense is the number of accounts that an attacker must
create to successfully craft an adversarial example. Each time the
attack is detected, the attacker must create a new account, so we
measure this through the number of times the attack is detected
before it is successful (number of accounts that must be created);
this determines the attacker’s cost to defeat the system. (e.g. on the
black market, a stolen credit card with CVV number costs $5 [7, 16],
so a single attack requiring 100 accounts would cost at least $500.)

The hard-label setting means that model queries return only the
categorical labels assigned by the classifier, but not the numerical
confidence scores associated with it. Our approach extends natu-
rally to other settings, but as argued in prior work [4] we believe
the hard-label setting is the most realistic black-box threat model.

There are two broad types of black-box attacks in the litera-
ture: query-based attacks, which make a sequence of queries to the
model, and zero-query attacks, which work entirely offline without
interacting with the model. While significant prior work has been
dedicated to constructing defenses against the latter [36], limited
work studies defenses against query-based attacks.

Query Attacks. Our defense is motivated by the sequential nature
of hard-label query-based black box adversarial attacks, such as
NES [24] and the Boundary Attack [5]. Query attacks iteratively
perturb a source example to slowly transform it into an adversarial
example according to some policy, usually by estimating gradients
or boundary proximity. This information is inferred by querying
points near the current proposed adversarial example.

Considering attack queries as a sequence, successive queries are
likely to be close together (by some distance metric), because (1)
each iteration of the attack makes a small gradient-estimation step
or boundary-following step from the current proposed adversarial
example to the next proposed example; and (2) since only labels are
accessible, the attack requires querying a random sample of points
near the current example to approximate the actual gradient or
decision boundaries of the model. Therefore, a scheme that tracks
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Figure 1: Our defense that detects query-based attacks.

the sequence of queries made to a model can detect an attack based
on an anomalous pattern of suspiciously close queries.
Zero-query attacks. Given two different models (even trained on
different datasets) for the same task, it turns out that adversarial
examples generated on one will often transfer [19] to the other.
This observation motivated the earliest black-box attack algorithms:
train a “surrogate model” [32] on the same task as the target model,
perform a gradient-based attack on the surrogate model, and replay
this generated adversarial example on the target model. This zero-
query attack, while not 100% successful, is surprisingly effective.

By definition, without query sequences to monitor, our approach
cannot defend against transfer attacks and other zero-query attacks.
Fortunately, others have proposed possible defenses to transfer
attacks. Perhaps the best known example is Ensemble Adversarial
Training (EAT) [36] which has been shown to be effective against
zero-shot adversarial attacks.

The major limitation of zero-query defenses (e.g., EAT) is that
they are not effective against query-based attacks. Thus, this prior
work of defenses targeting the zero-query threat model perfectly
complements our approach: we envision combining our defense
(to detect query-based attacks) with an existing defense (to detect
zero-query attacks). In Section 8, we combine EAT with our defense
to develop a complete defense to black-box adversarial examples.

3 OUR SCHEME
Wenow introduce and explain our scheme to detect black box, query
based, adversarial attacks by tracking the sequence of queries the
attacker makes in the process of generating an adversarial example.

3.1 The Query Detection Defense
At a high level, our defense is applied as an access monitor on
top of an existing classifier. The detector records all queries to the
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classifier and stores them in a temporary history buffer. For each
new query, the detector computes the number of “nearby” examples
in this temporary history buffer. If we determine there are too many
nearby examples, we report this as part of an attack sequence and
take appropriate action (e.g., block this user’s account).

In more detail, for each user, we save every query from that
user for a bounded duration (tuned according to the defender’s
resources, see Section 7). Then, for each new query the system re-
ceives, we compute its k-nearest-neighbor distance to the previously
seen examples—the mean pairwise distance between the query and
its 𝑘 nearest neighbors among the previously saved queries (i.e. for
each of the 𝑘 nearest neighbors, we compute the distance between
the neighbor and query, then take the mean over these 𝑘 distances).

Wemeasure the distance between queries by encoding the queries
using a similarity encoder [3], to map perceptually similar images
to nearby points in a reduced dimensional space, and then apply
ℓ2 distance. If the mean distance falls below a threshold, we flag
this query as an attempt at generating an adversarial example. The
detection threshold is set so that under benign use (i.e. if the entire
training set were to be randomly streamed as queries) the false
positive rate would be 0.1%. 1 After an attack is detected, the buffer
containing the previously saved queries for that user can then be
cleared. Moreover, in response to the attempted attack, the user
may then be banned from the service either immediately, or after
a random number of subsequent queries, in order to reduce the
attacker’s knowledge of when exactly their attack was detected. A
diagram of our scheme is shown in Figure 1.

3.2 Similarity Encoder
A key question in the design of our method is the metric to use for
the 𝑘-nearest-neighbor search. Naively, we might imagine choosing
a simple metric—for example, the ℓ2 distance between two images.
However, using such a simple method has two drawbacks:

(1) Simple metrics, such as ℓ2, do not accurately capture distance
in adversarial situations and are too easy for an attacker to
evade. A small rotation or translation in pixel space can cause
dramatic changes according to the ℓ2 norm, which experi-
mentally we find allows an adversary to evade detection.

(2) The ℓ2 distance requires storing an entire copy of every query.
This could pose a significant cost to the hosting service in
storage costs, and storing user queries for longer than strictly
necessary introduces potential privacy risks.

To increase the security of our scheme, we use perceptual simi-
larity for nearest-neighbor search, as adversarial attacks involve
generating new images that are perceptually similar to the original
image. To measure the perceptual similarity of two images, we train
a deep neural network to encode images into a lower-dimensional
space of dimension 𝑑 , such that similar images are mapped to simi-
lar points in the encoded space. For example, for a given picture
of a dog, after rotating or translating the image slightly, the per-
ceptual content of the image is still the same (i.e., the same dog),
and we train the encoder so that both of these images have similar
𝑑-dimensional representations.

1In practice, a lower false positive rate may be necessary. However, existing defense
research for detecting adversarial examples sets the false positive rate at approximately
5% [39] (NDSS’18). Our value is thus 50× lower than prior work.

This construction resolves both of the difficulties identified ear-
lier. By design, small modifications to an image are less likely to
cause dramatic increases in encoded-space ℓ2 distance. Further, be-
cause the encoded space is much smaller than the total image size,
this allows us to save on storage costs.

Encoder Setup & Training.We represent the encoder 𝐸 (·) as
a neural network mapping images 𝑥 ∈ Rℎ ·𝑤 ·𝑐 to an encoded space
𝑒 ∈ R𝑑 of dimension 𝑑 . As described, the objective of this encoder
is to map visually similar inputs 𝑥, 𝑥 to encodings 𝑒 = 𝐸 (𝑥) and
𝑒 = 𝐸 (𝑥) that are similar under ℓ2 distance, so that ∥𝑒 − 𝑒 ∥2 is small.

To achieve this we train the similarity encoder neural network
with a contrastive loss function [3]. Specifically, we consider two
pairs of images. Pair 1 consists of 𝑥𝑖 , an image drawn from the
training set, and 𝑥𝑝 , a “positive” image perceptually similar to 𝑥𝑖 .
Pair 2 consists of a different training image 𝑥 𝑗 , along with a negative
example 𝑥𝑛 , an image not perceptually similar to 𝑥 𝑗 . The contrastive
loss for their encodings (𝑒𝑖 , 𝑒𝑝 ), (𝑒 𝑗 , 𝑒𝑛) is

𝐿(𝑥𝑖 , 𝑥𝑝 , 𝑥 𝑗 , 𝑥𝑛) = ∥𝑒𝑖 − 𝑒𝑝 ∥22 +max(0,𝑚2 − ∥𝑒 𝑗 − 𝑒𝑛 ∥22).

The first term encourages similar encodings for positives and the
second term encourages different encodings for negatives by penal-
izing encodings less than a certain margin𝑚 apart for negatives.

Following prior work [3], we then use this loss function to fine-
tune a classification network (trained on the same set of images),
modified to replace the final logits layer with a 𝑑-dimensional en-
coding layer. Positive training pairs were generated by applying
a random image transformation (that should retain the image’s
perceptual content) to batches of training set images, while nega-
tive pairs were simply two randomly selected training images. The
transformations used are enumerated in Section 5.1, and further
training details can be found in the appendix.

3.3 Experimental Setup & Parameter Selection
We evaluate our defense on the CIFAR-10 dataset as is done in most
other adversarial example work [1, 30].

The choice of𝑘 , the number of neighbors, affects the effectiveness
of our scheme. Large values might improve the effectiveness of our
scheme at detecting attacks (since larger 𝑘 allows a larger threshold
while maintaining the 0.1% false positive rate, thus forcing the
attacker’s images to be very different to avoid detection). However,
𝑘 is the minimum number of queries before our defense could
possibly flag a possible attack, so smaller values of 𝑘 will enable
faster detection of attacks. Accordingly, we plotted the threshold
for a 0.1% FPR as a function of 𝑘 , and found that this threshold
increases sharply until 𝑘 = 50, where the distance begins to plateau
and marginally continues to increase as 𝑘 increases. Thus, we use
𝑘 = 50 for evaluating our scheme.

With 𝑘 = 50 and the corresponding threshold 𝛿 = 1.44, we
evaluate the FPR of our defense against the CIFAR-10 test set and
find the FPR to be 0%. We also evaluate against CINIC-10 [15]
(210,000 images of the CIFAR-10 classes taken from the ImageNet
dataset and downsampled to 32 × 32 × 3), and find the FPR to be
0.3%. This is slightly higher than the targeted FPR of 0.1%, likely
due to the slightly different distribution of the CINIC-10 images,
but still very reasonably close to the desired FPR.
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4 NON-ADAPTIVE EVALUATION
Having described our defense proposal, we begin by demonstrating
that it has at least some potential utility: it effectively detects exist-
ing (unmodified) black-box query-based attacks. While there are
many black-box (hard-label) attacks, they fall into two categories:

• Gradient estimation attacks operate like standard white-
box gradient-based attacks. However, because they do not
have access to the gradient, these types of attacks instead
estimate the gradient by repeatedly querying the model.

• Boundary following attacks, in contrast, first identify the
decision boundary of the neural network (possibly far away),
and then take steps following the boundary to locate the
nearest point on the boundary to the target image.

4.1 Attack Setup
For each attack studied, we use the targeted variant, where the
adversary generates an adversarial example chosen so that the
resulting adversarial example 𝑥 is classified as a target class 𝑡 and
is within a distance 𝜖 of an original image 𝑥 . The original image
and target class are chosen randomly, where the original image is
a test set image that is correctly classified by the targeted model.
We call an attack successful if the ℓ∞ distortion is below Y = 0.05.
Most white-box work on CIFAR-10 considers the smaller distortion
bound of Y = 0.031 [1]. We choose a larger distortion bound because
black-box attacks are known to be more difficult to generate and
so we give the adversary more power to compensate. The network
we attack is a ResNet [23] trained on the CIFAR-10 dataset for 100
epochs with Adam [28] and achieves 92% test accuracy.

NES [24] is one of the two most prominent gradient-estimation
attacks (along with SPSA [37]). It estimates the gradient by averag-
ing the confidence scores of randomly sampled nearby points, and
then uses projected gradient descent [30] to perturb an image of the
target class until it is sufficiently close to the original image. In the
hard label case, the confidence score for a point is approximated by
taking a Monte Carlo sample of nearby points, and then computing
a class’s score as the fraction of those points of that class.

The Boundary Attack [5] was the first attack to propose fol-
lowing the decision boundary to generate black-box adversarial
examples. Since its publication, there have been multiple propos-
als to improve this attack [6, 12]. We evaluate our defense on the
vanilla boundary attack; the other attacks are more query efficient,
but at their core perform the same operation. To compare directly
with the NES attack, we use ℓ∞ distance with the boundary attack
(instead of the usual ℓ2 distance) as implemented in FoolBox [33].

4.2 Results
We run each attack against our scheme and find that they can
be detected. The results are presented in Table 1. An attack is
considered successful if an adversarial example is found within an
ℓ∞ distortion of 𝜖 = 0.05 from the original image, with the correct
target class. We terminate each attack as soon as it finds such an
example. Each attack does eventually succeed at a high rate, but
is detected frequently: an attacker would need to create at least
200 accounts in order to generate a single adversarial example with
these attacks. This demonstrates that our query sequence based
scheme can detect un-modified attacks.

Table 1: Success rate of unmodified attacks on a neural net-
work protected with our scheme. While these attacks are
successful, 100% of attacks are detected, with each attack in-
stance requiring hundreds or thousands of accounts on av-
erage (over 100 instances per attack).

Attack Detected Attacked Queries Accounts

NES 100% 100% 325,200±153,300 6,377
Boundary 100% 100% 14,720±8,923 288

5 QUERY BLINDING: AN ADAPTIVE ATTACK
While showing that our proposed defense can detect existing attacks
is a useful first step, it is not sufficient for a complete evaluation.
We must also evaluate whether our defense can detect future at-
tacks. Doing this requires developing adaptive attacks specifically
designed to bypass the defense proposal [8].

Thus, we introduce query blinding, a general strategy which
can be used to hide the query sequence from the defender. Query
blinding is the most effective attack strategy we have found against
our scheme. At its core, the objective of a query blinding attack
is to learn the value of 𝑓 (𝑥), for some specific 𝑥 , without actually
revealing the example 𝑥 to the defender. We define two functions:
a randomized blinding function 𝑏 (𝑥 ; 𝑟 ) = {𝑥 ′0, 𝑥

′
1, . . . , 𝑥

′
𝑛} that maps

from one example to a set of modified examples so that ∥𝑥 ′
𝑖
−𝑥 ∥ ≥ Y,

and a revealing function 𝑟 (𝑓 (𝑥 ′0), 𝑓 (𝑥
′
1), . . . , 𝑓 (𝑥

′
𝑛)) that is designed

to estimate 𝑓 (𝑥) from the classifier outputs. For the majority of this
paper we restrict ourselves to the case where ∥𝑏 (𝑥)∥ = 1.

5.1 Image Transformations for Query Blinding
Let 𝑥 be the image that an attacker would like to query the model
for, 𝑓 (𝑥) be the model’s output, and𝑇𝑐 (𝑥 ; 𝑟 ) be a randomized image
processing transform (e.g., by rotating or shifting the image by a
random amount 𝑐); then we set 𝑏 (𝑥 ; 𝑟 ) = {𝑇𝑐 (𝑥 ; 𝑟 )}. In order to suc-
cessfully fool the detector, we would like the distortion between the
original image and the transformed image to be large. For example,
adjusting the brightness of a CIFAR-10 image by adding 0.05 to each
pixel introduces an ℓ2 distortion of 0.05×

√
3 × 32 × 32 = 2.77. After

distortion, these transformations still retain the primary content
of the image, and a model with high accuracy should produce rela-
tively similar outputs for the original and transformed images, so
the corresponding revealing function for an image processing trans-
formation is simply 𝑟 (𝑓 (𝑥 ′)) = 𝑓 (𝑥 ′). We examined seven possible
transformations: adding uniform noise, image translation, image
rotation, pixel-wise scaling, crop-and-resize, brightness adjustment,
and contrast adjustment.

5.2 Auto-Encoder for Query Blinding
We also consider attacks that involve learning the blinding function.
Specifically, we train an auto-encoder neural network 𝛼 (𝑥). Nor-
mally, auto-encoders are trained so that 𝛼 (𝑥) ≈ 𝑥 . In our case we
instead train a randomized auto-encoder 𝛼 (𝑥 ; 𝑟 ) to satisfy two prop-
erties: (1) ∥𝛼 (𝑥 ; 𝑟1) − 𝛼 (𝑥 ; 𝑟2)∥ |2 is large, but (2) 𝑓 (𝛼 (𝑥 ; 𝑟 )) ≈ 𝑓 (𝑥).
Satisfying property (1) ensures that the augmented image will evade
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Table 2: Query blinding breaks PRADA, but not our defense
(averaged over 100 instances). An adversary needs 950 ac-
counts to generate one adversarial example on our scheme.

Defense Detected Attacked Queries Accounts

PRADA 0% 47% 48,400±22,800 0
Ours 100% 47% 48,400±22,800 950

detection by the encoder, while property (2) ensures that the actual
classification of the image will remain unchanged.

Specifically, we train the auto-encoder to minimize the loss

ℓ (𝑥) = 𝐻 (𝑓 (𝛼 (𝑥 ; 𝑟 )), 𝑓 (𝑥)) − 𝑐 ·min(∥𝛼 (𝑥 ; 𝑟1) − 𝛼 (𝑥 ; 𝑟2)∥22 , 𝑑
2)

where 𝐻 (·) is the cross-entropy loss, 𝑐 is a constant that controls
the relative importance of the two loss terms, and 𝑑 is a constant
that sets the desired ℓ2 distance between transformed examples.

We train the auto-encoder with stochastic gradient descent for
10 epochs on the CIFAR-10 training data. In order to ensure that we
are not “cheating” by training on the exact function 𝑓 (·) which we
will be attacking, we train a new classification neural network 𝑓 ′(·)
on 10% of the CIFAR-10 training data. In practice, we set 𝑐 = 1.

To determine the threshold 𝑑 , we try values between 2 and 20
and pick the one that is most effective at fooling the detector. We
found that in practice 𝑑 = 10 is well-balanced between being big
enough so the detector is fooled, but not so big that 𝑓 (𝛼 (𝑥 ; 𝑟 )) is
substantially different from 𝑓 (𝑥).

5.3 Evaluation
We now evaluate query blinding against PRADA [25], an existing
detection scheme for model extraction attacks. (As far as we are
aware, there are no other current schemes designed to detect black
box adversarial attacks, so we found this to be the most relevant
existing defense that could also potentially detect query based black
box attacks.) Briefly, the crux of PRADA’s scheme is to compute
how closely the pairwise ℓ2 distance between queries conforms to a
normal distribution, and then compare that statistic to a threshold.

According to the process described by its authors, we tune the
parameters of PRADA such that it also achieves a 0.1% FPR on the
CIFAR10 training set (see Appendix C.1). We use the pixel-wise
scale transformation (scaling all pixels by 𝑐 ∼ 𝑈 (1−𝑟, 1+𝑟 ); 𝑟 = 0.34)
for query blinding with the NES attack (𝑠 = 5 and 𝜎 = 0.1), and find
that the attack goes undetected, as seen in Table 2. This shows that
even the simpler query blinding of using image transformations is
effective at bolstering attacks and evading existing defenses. This
modified NES attack is explained further in-depth in Section 6.1.

6 ADAPTIVE ATTACK EVALUATION
Given that our proposed defense effectively prevents existing black-
box attacks, we now study whether or not it can prevent more
sophisticated attacks. We find that while it is possible to degrade
the effectiveness of the defense, we can not defeat it completely.
We study both gradient attacks (specifically, variants of NES with
various kinds of query blinding) and boundary-following attacks
(specifically, variants of the boundary attack with query blinding).

6.1 The NES Attack
To generate a targeted adversarial example for a given input 𝑥 ,
NES starts with an image 𝑥 ′ of the target class, 𝑡 , and then uses
projected gradient descent to reduce the distortion between this
image (already of the target class) and the original example 𝑥 to be
within 𝜖 of the original image. Per iteration of projected gradient
descent, the NES attack makes use of two procedures that require
queries (full details can be found in [24]):

(1) Gradient approximation: Sample𝑛 basis points, \𝑖 , within
some ℓ∞ distance 𝜎 of 𝑥 ; then average their 𝑛 confidence
scores to approximate the gradient, ∇𝑃 (𝑦 = 𝑡 |𝑥).

(2) Confidence score estimation: For each\𝑖 , sample 𝑠 queries
within an ℓ∞ radius ` of \𝑖 , and estimate \𝑖 ’s score for class
𝑡 as the proportion of the 𝑠 queries that were of class 𝑡 .

6.1.1 Parameter Tweaking. The default attack parameters for NES
are 𝜎 = 0.001, 𝑛 = 4, 𝑠 = 50, ` = 0.001, and learning rate = 0.01 [24].
We try to adjust these parameters to make it harder for our defense
to detect the attack. We increase `, the radius of the sampling ball
used when sampling points for confidence score estimation, and
find the attack succeeds up to ` = 0.064. At this value, the 50-
nearest-neighbor distance between an image and the 𝑠 sampled
points is on average 2.32, significantly larger than the 50-nearest-
neighbor distance of just 0.032 for ` = 0.001.

We then decrease 𝑠 and generate fewer queries near \𝑖 when
estimating confidence scores. The attack remains reasonably suc-
cessful even reduced to 𝑠 = 2, while the attack becomes harder to
detect, so we use 𝑠 = 2 here on. The attacker could also increase 𝜎
so that the sampled Gaussian basis points \𝑖 are further apart, and
we leverage this in the high-distortion attacks in the next section.

6.1.2 Query Blinding. We modify the confidence score estimation
procedure to sample 𝑠 points using the transformations listed in
Section 5.1 instead of sampling from a ℓ∞ ball of uniform radius.
The parameters for each transformation are normalized so that the
expected ℓ2 distortion from each transformation is equal to 2.32. 2
When running the NES attack, each time we query the classifier
we preprocess the image with one strategy. Table 3 shows the ef-
fectiveness of different transformations. For some transformations,
like uniform and Gaussian noise, the NES attack fails completely.
However, the NES attack works even better with brightness and
pixel-scale transformations than the original confidence estimation
procedure of uniform noise. This suggests that estimating the confi-
dence score for an image may be more accurate with certain image
transformations than others.

For all transformations, each attack requires at least one hundred
accounts (on average), so our defense is effective at detecting these
query blinding attacks. The exact attacker cost corresponding to
this number of accounts is quantified further in Section 7.

For this level of transformation distortion, the similarity encoder
offers little benefit over ℓ2 distance. This is understandable, as when
𝑘 = 50 and using ℓ2 distance as the distance metric for the defense,
the ℓ2 detection threshold is 𝛿 = 5.069, which is greater than the
ℓ2 distortion of 2.32 induced by these transformations. We also

2We selected a constant of 2.32 to match the ℓ2 distortion of setting ` = 0.064. (Note
that ` is now only applicable when using the original strategy of sampling from a ball
of ℓ∞ radius `). We used the same parameters when training the similarity encoder.
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Table 3: Success rate of query blinding using NES and Boundary Attack. The number of accounts an adversary would need
to generate a single adversarial example varies between 97 and 504 for NES, and 76 to 609 with the Boundary/HopSkipJump
Attack. The ℓ2 detector performs strictly worse than our simiarlity encoder, especially on auto-encoder attacks. (Each attack
was run over the same 100 randomly selected images and target classes, with a budget of 200,000 queries per attack instance.)

Attack Attacks Attack Success Rate Queries Similarity Detector ℓ2 Detector
Detected Accounts Accounts

Lo
w
D
is
to
rt
io
n

NES (query blinding: uniform noise) 100% 1% 15,700±0 308 308
NES (query blinding: translate) 100% 4% 6,710±400 131 131
NES (query blinding: rotate) 100% 7% 10,200±684 198 199
NES (query blinding: scale) 100% 27% 12,600±882 246 246
NES (query blinding: crop and resize) 100% 7% 6,130±247 119 119
NES (query blinding: brightness) 100% 55% 13,500±780 264 263
NES (query blinding: contrast) 100% 23% 11,200±777 219 219

H
ig
h NES (query blinding: brightness) 100% 43% 24,500±2,630 481 60

NES (query blinding: scale) 100% 42% 25,700±3,000 504 88
NES (query blinding: contrast) 100% 37% 19,100±4,240 375 85

NES (query blinding: auto-encoder) 100% 76% 13,400±8,400 97 12

Boundary (normal) 100% 100% 14,700±892 288 -
Boundary (Perlin noise) 100% 40% 31,100±976 609 -
Boundary (query blinding: brightness) 100% 2% 24,100±1,470 473 -
Boundary (query blinding: auto-encoder) 100% 61% 34,200 ± 8,000 240 -
HopSkipJumpAttack 100% 100% 3,940 ± 3,480 76 -

evaluated against attacks with transformations that introduce a
greater distortion. We increase 𝜎 to 𝜎 = 0.1 (the highest value found
experimentally where the attack still succeeds reasonably often)
and increase the distortion parameter for each transformation so
that the expected ℓ2 distortion introduced is 5.10. Results for these
higher-distortion attacks are shown in Table 3.

Against these higher-distortion transformations, the similarity
encoder is 6–8× more effective at detecting attacks compared to ℓ2
distance on images. As explained in Section 7, this significantly in-
creases the cost to the attacker. This demonstrates that the similarity
encoder significantly increases robustness against adaptive query
blinding attacks. The number of accounts needed increases when
using higher-distortion transformations versus lower-distortion
transformations; this is because the attack needs more queries on
average to succeed (due to less precise gradient estimates), resulting
in more opportunities to detect the attack.

The learned auto-encoder is more effective than simpler trans-
forms. (Visualizations of auto-encoded images are presented in
Figure 2, in the Appendix.) The auto-encoder is particularly effec-
tive at defeating a defense that uses ℓ2 distance on images, as it is
trained to map an image to a blinded version with large ℓ2 distor-
tion. However, our full defense with a similarity encoder remains
able to detect the auto-encoder attack. Future work may be able to
improve the auto-encoder attack by training it adversarially.

6.2 The Boundary Attack
The boundary attack [5] is a gradient-free attack that starts with an
image of the target class and then makes steps alternating between
moving the image along the decision boundary (while remaining

adversarial) and steps which move towards the original image. In
more detail, the boundary attack alternates between two operations.
1) Distortion-reducing (inwards) step, given the current proposed
adversarial example 𝑥 ′

𝑖
, we take a small step Y in the direction of

the original image 𝑥 and let 𝑥 ′
𝑖+1 = 𝑥 ′

𝑖
+ Y · (𝑥 − 𝑥 ′

𝑖
). 2) Orthogonal

(boundary-following) step, starting from the current adversarial
example 𝑥 ′

𝑖
, take a step along a random direction 𝑟 orthogonal to

𝑥 − 𝑥 ′
𝑖
, subject to the constraint that 𝑓 (𝑥 ′

𝑖
+ 𝑟 ) = 𝑓 (𝑥 ′

𝑖
).

We evaluate our defense against different variations of the bound-
ary attack. First, we sample random directions from Perlin noise
instead of a Gaussian distribution, as this substitution was shown to
increase the attack’s success rate with a limited number of queries
(fewer than 15,000 queries) [6]. We also evaluate the effectiveness of
a boundary attack with query blinding. In particular, we preprocess
all queries made by the boundary attack with the transformation
that worked best with the NES attack (brightness), as well as the
autoencoder. Lastly, we evaluate against the HopSkipJumpAttack
(HSJA) [12], an improved extension of the boundary attack that uses
significantly fewer queries by estimating the direction of the gradi-
ent with binary information at the boundary. We use the default
parameters provided in the authors’ public implementation.

Table 3 shows our ability to detect different versions of the bound-
ary attack. We allow 200,000 queries, the same number of queries
as the best NES attack variants. Perlin noise does not perform bet-
ter than the original boundary attack, likely due to the observed
decreasing utility of the Perlin noise at these higher query numbers
[6]. Preprocessing queries with the brightness transform is also
ineffective: it does not decrease the number of accounts needed
while significantly decreasing the boundary attack’s success rate.
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This is because the boundary attack adjusts its step size according
to the local geometry of the boundary (estimated from past queries);
the preprocessing causes the attack to misapproximate the local
boundary geometry and converge prematurely before finding a
point within distance 𝜖 from the original image 𝑥 and failing to
make further progress. Consequently, of the variants we studied,
only HSJA is more effective than the original boundary attack.

Our defense is effective at detecting the boundary attack: an
attacker would need to create 200 accounts to create a single ad-
versarial example. Even using the HopSkipJumpAttack, an attacker
would require at least 75 accounts to generate a single successful
adversarial example when our detector is in place.

6.3 Multi-Account Sybil Attack
So far our attacker has only used one account at a time in order to
generate an adversarial example. However, an attacker might try to
create multiple accounts and then distribute their queries among
these multiple accounts. In Appendix C.3, we evaluate the efficacy
of our defense at detecting an adversary who creates multiple Sybil
accounts and uses them to construct one attack. In our naive con-
struction, cyclic account reuse, an attacker creates 𝐶 accounts and
then to generate an adversarial example, queries the 𝑖-th query
through account 𝑖 mod 𝐶 . However, we find that this attack (as
well as a more powerful one) does not succeed.

6.4 Attacking the Similarity Encoder
An attacker might try to defeat our scheme by fooling the similarity
encoder, e.g., generating a blinded version 𝑥 ′ of a query 𝑥 such
that the similarity encoder considers 𝑥, 𝑥 ′ to be dissimilar, yet they
have the same classification. Because the similarity encoder is kept
secret in our defense, there is no way to perform a white-box attack
to construct such blinded queries. There is no direct way to mount
a black-box query attack, either: there is no way to supply an image
𝑥 and learn its encoding, or submit a pair of images 𝑥0, 𝑥1 and learn
whether they have similar encodings.

This leaves only side-channel attacks on the similarity encoder.
For instance, an attacker could create a new account, submit a batch
of 𝑘 + 1 images, and observe whether the account is cancelled; this
reveals whether the 𝑘 + 1st image was similar to the previous 𝑘 .
However, such an attack would be very slow. Each 𝑘 + 1 queries
reveal only a single bit of information about the similarity encoder.
As constructing a surrogate model or mounting query-based attacks
typically require tens or hundreds of thousands of examples, such an
attack would require creating an infeasible number of fake accounts.

Information-theoretically, to maximize the amount of informa-
tion revealed per query, the optimal strategy is to issue 𝑘 = 50
queries, then issue subsequent queries chosen so that each has
about a 𝑝 ≈ 1/18 chance of triggering detection and observe which
one causes the account to be cancelled; this reveals about 5.6 bits
of information per account and issues about 68 queries per account
(on average). We expect that it would still require thousands of fake
accounts, so it is unlikely to be effective.

7 ECONOMICS OF PERFORMING AN ATTACK
Assuming our defense was in place, what would the economics
look like for an attacker who wished to completely avoid detection,

using a single account? We consider a thought experiment where
an attacker is given information for whether or not each query to
the detection scheme will be detected as part of an attack sequence
and knows 𝑘 . Normally, the attacker will not know this information,
as the encoder is not made public in our scheme.
Case 1: time-bounded buffer. Consider an attack that needs 𝑑
accounts, i.e., is detected 𝑑 times before successfully generating
an adversarial example. If we store each query until 𝑡 hours have
passed, then an attacker with one account would need 𝑑𝑡 hours
to execute the attack without detection. The most effective attack
against our scheme that we have found (HopSkipJumpAttack) trig-
gers 76 detections. If we store queries for 100 hours, generating a
single adversarial example without being detected would take over
10 months.

An attacker may also make benign queries constantly in order to
simply impose a high resource cost to the defender to maintain the
time bounded buffer. However, in practice, most machine learning
APIs/services already enforce a rate limit on users that not only
prevents the original service from abuse/overuse but also in this
case upper bounds the resource cost of the buffer.

For example, Google’s Cloud Vision API currently has a rate limit
of 1800 queries per minute per user, so a user who continuously
makes the maximum number of queries could make 10.8M queries
per 100 hours. Our similarity encoder maps each input to a 256-
dimensional output, so storing these 10.8M vectors (with 16-bit
floating point values) would require 5.5GB of storage. Google’s
cloud storage is currently priced at $0.026/GB/month per user [20],
so the storage cost to the provider of the query buffer would be
at most $0.14/month per user—and only if those users spent over
$2,000 per month on API requests. Thus, even for a reasonably long
buffer duration of 100 hours, the defender incurs a relatively small
monetary cost in the worst case of a maximally querying user, and
an even smaller cost in the average case.
Case 2: query-bounded buffer. Suppose we always store the last
𝑁 queries made by each user. An attacker who knows which queries
will trigger a detection could avoid detection by flushing the buffer
(by making 𝑁 extra random queries) just before being detected. An
attack that triggers 𝑑 detections (i.e., normally requires 𝑑 accounts)
could be executed by an attacker with a single account in this setting
using about 𝑑𝑁 total queries if the attacker wishes to avoid being
detected. Making these additional “hiding” queries to disguise the
attack comes at a significant cost to the attacker.

For example, Google’s Cloud Vision API currently costs $1.50
USD per 1000 queries [20]. If the buffer stores 𝑁 = 104 examples,
our most effective attack would require about 76 × 104 queries to
execute without being detected, which would cost about $1150 USD,
a sizeable amount of money for an adversary to pay for generating
a single adversarial image. For comparison, without our defense,
the best attack we tried would cost about $6 USD. At current Google
cloud storage prices, the cost to the service provider to running the
defense, for 𝑁 = 104, would be about $0.0007/month per user.

8 ZERO QUERY DEFENSE
Our scheme detects query-based attacks, but cannot detect zero-
query attacks. We propose that our scheme be combined with en-
semble adversarial training (EAT), one of the most effective existing
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Table 4: Effectiveness of our defense with an EAT-defended
model. Against the most effective attack variants (NES with
low distortion brightness query blinding, the Boundary at-
tack with normal sampling, and the HopSkipJumpAttack),
our defense still detects query-based attacks, while EAT
makes the defendedmodel robust to zero-query attacks. The
attacks’ success rates also decrease for the EAT-defended
model compared with the non EAT-defended model. 100 in-
stances were run per attack, and each attack instance could
make up to 200,000 queries. Queries and accounts needed
are an average over the successful attack instances.

Attack Attack Success Rate Queries Accounts
(EAT) (non-EAT)

NES (best) 17% 55% 22,510±17,000 442
Boundary 95% 100% 19,928±24,300 391
HSJA 96% 100% 7,390±4,970 143

Table 5: Robustness against transfer attacks of an unpro-
tected ResNet compared to an EAT-defended ResNet. The
second column shows the error rate on clean examples; the
subsequent columns show the success rate of transfer at-
tacks using untargeted FGSM, and untargeted and targeted
variants of the attack from Carlini and Wagner [10].

Model Clean FGSM(u) CW(u) CW(t)

ResNet50v1 7.8% 73.8% 59.1% 18.8%
ResNet50v1-EAT 14.6% 14.4% 16.4% 1.0%

defenses against black-box zero-query attacks [36]. EAT generates
white-box adversarial examples with distortion 𝜖 on an ensemble
of static models with different architectures and weights, and trains
the defended model on these examples. This procedure has been
demonstrated to make the defended model robust against adver-
sarial examples transferred from a holdout surrogate model, while
resulting in only a modest decrease in the defended model’s clean
accuracy (on non-adversarial examples). Accordingly, we train a
ResNet50v1 classifier for CIFAR-10 using EAT, with 𝜖 = 0.05, to
construct a model robust to zero-query attacks of 𝜖 = 0.05. Further
training details can be found in the appendix.

To evaluate the EAT-defended model, ResNet50v1-EAT, against
zero-query transfer attacks, we generated adversarial examples
(over the CIFAR-10 test set) on a holdout ResNet74v2 model, and
then saw if those examples transferred (i.e., were also adversarial
for the ResNet50v1-EAT). To give the attacker every advantage,
we trained the ResNet74v2 surrogate model on the same CIFAR-10
training set, with the same training parameters. We used FGSM [19]
and a clipped modification of the Carlini-Wagner (CW) ℓ2 attack
[10] to generate adversarial examples (with 𝜖 = 0.05 and ^ = 100
for the CW attack). Table 5 shows the success rate of attacks against
the defended ResNet50v1-EAT.

Compared to the undefended model, the EAT-defended model is
more robust to all three transfer attacks. The EAT-defended model

does incur a noticeable decrease in clean accuracy, but in exchange
we obtain substantial robustness against transfer attacks for a fairly
large value of 𝜖 = 0.05 (for reference, [36] used 𝜖 = 0.06 for de-
fending models trained for much higher dimensional, 256x256x3
ImageNet images). In practice, the defender may tune 𝜖 according
to their demands between accuracy and robustness.

Our defense remains effective an EAT-defended model. We reran
the best query-based attack variants on this EAT-defended model;
results are shown in Table 4. Our scheme is still able to detect query-
based attacks frequently, and it appears that the EAT model may
even reduce the success rate of query-based attacks.

9 LIMITATIONS
The main limitation we see for our defense is with video classi-
fication, as benign, sequential video frames are likely to be very
similar to each other. To evaluate this use case, we sampled frame
sequences from three videos that focused on CIFAR10 classes (e.g.
footage of the National Dog Show) to input into our scheme. Since
the threshold, 𝛿 , was originally set according to the non-self-similar
CIFAR10 training set, we tune 𝛿 to tolerate the increased similar-
ity for benign images. All attacks were detected from k-neighbors
distances well below the original threshold set, so we lower the
threshold to the lowest value such that all attacks are still detected.

With this adjustment, we found the FPR on these videos could
range up to 3.8%, higher than our targeted FPR of 0.1%, but still
lower than prior work [39], even in one of the most challenging
settings for this defense. However, in settings where users classify
video frames frequently, a nonzero FPR may not be practical and
further tuning or development may be necessary (see Appendix E).

10 CONCLUSION
Defenses against white-box adversarial examples have thus far
proven elusive; thus, we advocate for increased study into black-
box defenses against adversarial examples. In the black-box setting,
the academic community has thus far studied only stateless de-
fenses; we argue that stateful defenses give the defender a new
advantage and deserve attention. Towards this end, we propose
a simple scheme that detects the process of adversarial example
generation, and introduce query blinding, an adaptive attack on
such schemes that is effective at breaking prior work. By combining
our proposed approach with existing defenses that prevent trans-
ferability attacks, we construct the first unified defense that might
offer black-box robustness.
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A ADDITIONAL RELATEDWORK
As described in Section 5.3, the most closely related work is to
ours is PRADA [25]. However, this work does not perform adaptive
attacks on their scheme, and we show that query blinding is able to
defeat this defense. Moreover, while our defense is robust against
Sybil attacks, their authors note that PRADA is not. They do not
consider how to detect creation of adversarial examples.

Much previous work has explored stateless detection of whether
an individual query is adversarial, usually by checking if the query is
out of the distribution of normal/benign data [17, 22, 31]. However,
effective detection under this stateless threat model has proven
difficult [9].We instead examinewhether access to prior state allows
the defender to gain an advantage.

Developing robust classifiers (absent the black-box threat model)
is a large research direction. One of the best known approaches
is adversarial training [30]. Any of these such defenses are com-
plementary to our detection scheme: we can apply our detection
strategy on top of any model. In our paper we study our defense on
top of a non-robust model for simplicity and to accurately measure
the value of this type of defense. Recent work on robust similar-
ity [27] could also be useful for improving our defense.

There are other query-based black-box attacks that may be useful
for performing better query blinding attacks. These attacks often
follow either a similar gradient-estimation approach as NES, or a
boundary-following approach similar to the boundary attack. For
example, SPSA [37], another gradient-estimation attack, estimates
the gradient with Bernoulli instead of Gaussian directions.

Transfer attacks are a common approach in the zero-query set-
ting [32]. We explore combining our defense with ensemble adver-
sarial training [36], currently one of the most effective defenses
against zero-query transfer attacks, but the recent Sitatapatra de-
fense may also be effective [34].

The approach for query blinding takes inspiration from previous
work in signature blinding [11] and mimicry attacks [38].

B SIMILARITY ENCODER TRAINING
As in [3], we initialize our encoder with the same architecture
and weights as a network trained to classify the desired images.
For CIFAR-10, we train a three-layer CNN [26] for 100 epochs
using data augmentation and reach a validation accuracy of 76%.
We then substitute the logits layer with a new encoding layer of
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dimension 𝑑 = 256. We found a margin of𝑚 =
√
10 experimentally

resulted in the best encodings. A more complex architecture might
yield stronger results, but to keep our initial design simple we use
this CNN. We fine-tune this modified network to minimize the
contrastive loss function described in Section 3.2, with a learning
rate 𝛼 = 1𝑒−4, momentum ` = 0.9, and batch size 𝑏 = 32.

C ADAPTIVE ATTACKS/EVALUATION
C.1 PRADA Evaluation Parameters
PRADA sets a single parameter, the detection threshold, 𝛿 , accord-
ing to a desired false positive rate (FPR). As described in [25],
PRADA’s FPR is evaluated by dividing a set of benign queries into
chunks of 50 queries, inputting each chunk into PRADA, and com-
puting the FPR as the fraction of chunks that trigger detection.
Similar to tuning our scheme’s threshold, we use the CIFAR10 train-
ing data as the set of benign queries, randomly divide it into 1,000
chunks, and tune the threshold to 𝛿 = 0.88 to yield an FPR of 0.1%.

C.2 Additional Figures

 

 

 

 
Figure 2: For each image in the test set (left) we show four
possible images transformed by our auto-encoder (right)
that have the same classification label but have high ℓ2 dis-
tance from each other.

C.3 Extended Sybil Account Attack
Cyclic account reuse strategy. In the simplest Sybil attack strat-
egy, an attacker creates 𝐶 accounts and then, for a given attack
instance, makes the 𝑖-th query through account 𝑖 mod 𝐶 . The pri-
mary benefit of such a strategy is that any given detector is only
allowed to observe every 𝐶-th query. An attacker may hope that
this will increase the distance between consecutive queries seen by
the detector (per account) and could require fewer accounts.

However, we find that this does not actually help. Upon investiga-
tion, we find the reason for this is that in practice, the randomness
introduced through gradient estimation is roughly at the same scale
as the total perturbation introduced throughout the process, and
therefore observing sequential queries is much less important than
observing queries from the same adversarial example generation
process. However, this is just one attack strategy: a careful attacker
may come up with a stronger one.

Near-optimal account reuse strategy. We now show that it is
unlikely there exists a Sybil strategy which partitions a query se-
quence to reduce the detection rate by more than a factor of two.

We perform the following setup. We take the query sequence
{𝑥𝑖 }𝑁𝑖=1 for a run of NES (using brightness for query blinding) to
generate an adversarial example 𝑥𝑁 and process each input with
the encoder to obtain the embeddings 𝑒𝑖 = 𝑒 (𝑥𝑖 ). Then, we compute
the pairwise distance between all pairs of points 𝑑𝑖, 𝑗 = ∥𝑒𝑖 − 𝑒 𝑗 ∥.

We now ask: what is the largest set 𝑆 ⊂ [1..𝑁 ] such that the 𝑘-
nearest neighbor distance for each point is larger than the detection
threshold. Because finding the largest set is NP Hard (it is easy to
see through reduction from maximum clique), we approximate this
quantity greedily, starting with the empty set and adding elements
that are maximally far apart. On performing this experiment, we
find that when a defense uses 𝑘-nearest neighbor distance, it is not
possible to construct a set with |𝑆 | > 2 ·𝑘 . (For example, when 𝑘 = 5
the largest set we can construct is |𝑆 | = 9; when 𝑘 = 25 the largest
set we can construct is |𝑆 | = 44.) Thus, if we conservatively assume
that every set could be made this largest size, we are guaranteed
one detection at least every 2𝑘 queries per Sybil account, reducing
the detection rate by at most a factor of two. We now discuss further
disadvantages of using Sybil accounts.
Drawback of Sybil Accounts. For anti-abuse reasons, most ser-
vices already take measures to ensure that users do not create a
large number of accounts. However, further, if a single user created
multiple accounts and spread queries across each of these accounts,
we believe this would only make it easier for the service provider to
detect that one user was using multiple Sybil accounts. For example,
if occasionally the service provider ever performed an across-user
query-history analysis, it would be possible to discover the same
user making highly-similar queries across different accounts.

D ENSEMBLE ADVERSARIAL TRAINING
We pre-train a ResNet50v1 on CIFAR-10 (accuracy 92.2%), then
train it for 100 epochs on adversarial examples generated on an
ensemble of different trained ResNets: ResNet44v1, ResNet56v2, and
ResNet74v1. Examples were generated using FGSM [19] with 𝜖 =

0.05, and each epoch’s adversarial examples were generated from
a randomly selected model from the ensemble and the defended
model (one example generated per CIFAR-10 training image).

E VIDEO CLASSIFICATION
Videos were sampled at 30 frames per second, then downsized to
32𝑥32𝑥3, yielding 7, 000 frames per video. The threshold was tuned
from 𝛿 = 1.44 to 𝛿 = 0.7. Decreasing the sampling rate by a factor
of𝐶 decreased the FPR by a factor greater than𝐶 , (e.g. reducing the
frame rate from 30fps to 15fps reduced the FPR by 0.6 instead of
0.5), as successive frames were less likely to have similar content.

The defender may need to further tune the threshold according
to the natural workload that their system would expect (e.g. if the
classification system is to be used for video frames, then a set of
video frames, rather than static images, should be used to set the
defense’s threshold). The video classification setting may also be
significantly expensive for users, as such frequent querying to an
image classification API would incur high costs.
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