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Abstract—Smartphone sensors are becoming more universal
and more accurate. In this paper, we aim to distinguish between
four common positions or states a phone can be in: in the hand,
pocket, backpack, or on a table. Using a uniquely designed neural
network and data from the accelerometer and the screen state,
we achieve a 92% accuracy on the same phone. We also explore
extending this to different phones and propose an acceleration
calibration technique to do so.

Index Terms—Sensors, Smartphone, Position

I . I N T R O D U C T I O N

With the recent proliferation of smartphones with sensors,
such as light sensors and accelerometers, combined with the
wide usage of smartphones over traditional phones, there has
been an explosion of applications utilizing sensors, including
activity detection [1] and user authentication [2], [3]

Knowing, a priori, the position of the phone (e.g., in a bag, in
a user’s pocket, etc.), which we will call phone state, can prove
to be useful. For example, a phone’s vibration intensity can be
adjusted based on where the phone is positioned on the person,
potentially prolonging battery usage [4]. In another example,
CO2 and pollution sensors could be turned off automatically
if the phone were deemed to be in a pocket or backpack [5].

Not only that, but phone state can also be a powerful
information tool that can enhance the quality of other classifiers.
For example, Martı́n et al. has shown that feeding phone state
as an input to a classifier doing activity prediction will increase
accuracy in certain instances [1]. As another example, user
authentication performance was augmented when a prior step
was taken to infer phone state [3].

In this paper, we discuss our methodology of automatically
detecting and differentiating between four commonly identified
phone states: table, backpack, hand, and pocket. To do this,
we explore useful phone features that can be easily accessed
from sensor data available to Android phone models, namely
data from the accelerometer and the screen. We then introduce
a neural net architecture well-suited to process and learn from
these features, and demonstrate that this architecture can achieve
92% accuracy in classifying a phone’s state provided data from

a single phone model. We then extend this to a different phone
model and show that it could be possible to evaluate states
on a different phone, even if the phone has an accelerometer
sensor that is calibrated differently. To do this, we found that
the acceleration values between the two phones can be adjusted
with a simple offset. In two cross phone studies we achieve
accuracies of 78% and 91%. Unfortunately, we were unable to
investigate the root cause of this discrepancy further. While the
work on this is preliminary, we believe it provides an important
step toward the goal of a universal classifier that can detect
different phone states across phone models.

I I . R E L AT E D W O R K

There has been much previous work involving smartphone
sensors. Note that this is a different set of work than the previous
work that exists for wearable sensors, [6], [7]. We focus on
smartphone sensors since we believe they are more readily
accessible, prevalent, and versatile than wearable sensors.

Work by Khan et al., utilized accelerometer values to classify
phone state but was limited to distinguishing between whether
the phone was in the upper or lower half of the body [8].
Similarly, Miluzzo et al. proposed the use of various sensors
to classify different phone locations, but only recognized two
states: inside and outside of a pocket [5]. In contrast, our work
distinguishes between four states: hand, pocket, backpack, and
table.

Several other works tried to classify and distinguish between
more states (e.g. hand, bag, pocket, etc.), but only used data
from the accelerometer resulting in accuracies between 74.6%
to 84% [4], [9]. Our work improves on this accuracy by utilizing
additional data from the phone screen.

Park et al. achieved an accuracy of 94% in distinguishing
between hand, ear, pocket, and backpack, but limited the data to
record instances where the user was walking [10]. In contrast,
our work does not require that the phone user perform a specific
task in order to distinguish between states. Rather, we train
and validate our model on phone data collected throughout the



entire day, including times when the phone may be still and
not actually on the user.

Other works improved accuracy by using several additional
sensors [11]. For example, Wiese et al. explored the idea of
adding sensors that utilize capacitive sensing, multi-spectral
properties, as well as light and proximity sensing [12]. They
were able to achieve accuracies of 85% to 100%. Similarly,
Martı́n et al. used sensors like light, proximity, and acceleration
sensors to obtain phone state accuracy of 92.94% [1], but at a
cost in file size. Our work achieves similar accuracy rates but
with data from fewer sensors.

In a somewhat different approach, work by Wijerathne
et al. [13] took advantage of smartphone accelerometers to
help monitor road conditions. Similar to our work, the paper
attempted to generalize between all positions the phone could
be in, but instead of detecting the exact position of the user’s
phone, the authors attempted to detect rough roads and bumps
while cycling.

In this paper, we take this idea further and utilize data from
only two sources: the accelerometer and the phone screen.
Data from both sources is readily available, does not require
specific user permissions, and is less energy draining than
previously studied sensors. Furthermore, unlike previous work,
we also train and validate our model on phone data collected
throughout the entire day, and not just during specific tasks
(e.g. walking). This includes times when the phone may be
still and not actually directly on the user. An example of this
may be if the phone is left on a table or in a backpack.

I I I . A P P R O A C H

A. Problem

We want to predict the state of an user’s phone based on the
sensor data collected on the phone. From our observations and
prior research, the most common states of the phone would
be in a user’s: backpack, pocket, hand, or on a table. Upon
a cursory observation of accelerometer traces, these phone
states also appeared to be distinguishable and motivated our
approach to use deep learning to classify these states. Sample
accelerometer traces for the states, measured on a Nexus 5X
smartphone are shown in Figure 1.
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Fig. 1. Typical acceleration graphs for our four states for a Nexus 5X.

Our goal is to allow the classifier to predict phone states no
matter what action the user may be performing. This includes
times when the phone is not physically on the user, including
cases that may be very difficult to differentiate: a phone being
in a still backpack versus on a table, for example. Later, we
propose a potential solution to this problem.

B. Features

For creating features, the relevant sensor data were the
accelerometer readings (X, Y, Z values), number of unlocks,
number of screen touches, and number of times the screen
turned on/off. For each window of 0.5s of these raw sensor
readings, we generate the following features:

1) Total number of phone unlocks
2) Total number of phone touches
3) Fraction of window that phone screen was on
4) Mean acceleration in each of X, Y, Z
5) Std. deviation of acceleration in each of X, Y, Z
6) Mean magnitude of acceleration in each of X, Y, Z
7) Std. deviation of magnitude of acceleration in each of X,

Y, Z
8) Phone is flat (handcrafted feature explained below)
The “Phone is flat” feature is a boolean feature derived from

the raw accelerometer readings. The feature is 1 if the three
equations below all hold, and 0 otherwise.

(Mean X Accel. Magnitude) < 1.0
(Mean Y Accel. Magnitude) < 1.0

|9.8− (Mean Z Accel. Magnitude)|< 1.0

In practice, features 1-3 (phone unlock count, phone screen
touch count, and phone screen on time) will usually be 0 or
1, since there is unlikely to be more than 1 such event in the
window.

Other sensors that we considered to be relevant for predicting
phone states are the batched light sensor and step count.
However, the batched light sensor was not used because of
its inability to distinguish outdoor nighttime darkness and the
darkness from an enclosed backpack. We could not use the
step count sensor because the sensor data we collected showed
that this sensor was not reliable for our phones.

We do not utilize a overlapping or ‘rolling’ window. Instead,
we take distinct chunks of 0.5 seconds. We believe that this
is acceptable since the window size is small enough that we
would not miss most transitions. This decision is supported
by previous work that found no notable difference in accuracy
between using overlapping and non-overlapping windows [1].

C. Architecture

Our architecture has two parts. The first consists of con-
volutional layers, while the second part contains dense fully
connected layers.

In the convolution section, we use the raw acceleration data,
which includes the acceleration in the x, y, z directions. After
multiple one-dimensional convolution layers, max and global
pooling, and dropout layers, we concatenate the 16 features
above in order to incorporate the features that do not involve
the data from the accelerometer. Together, these features are
fed into the second part of the net. We chose to separate the
features in this way in order to take advantage of the potentially
periodic behavior of a user’s acceleration in certain positions
(e.g. walking). The features that use the acceleration in the X,
Y, Z are separated from the other binary features because we



Fig. 2. The architecture of our convolutional neural net

Layer Filters Outputs Activation
/ Note

Conv1D 64 48×3 ReLU
Conv1D 64 46×3 ReLU
MaxPooling1D 64 15×3 Stride = 3
Conv1D 128 13×3 ReLU
Conv1D 128 11×3 ReLU
GAP1D 128 128×1
Dropout — 128×1 Rate = 0.5
Concat — 144×1 (128×1)

+ (16×1)
Dense — 64 ReLU; 6 of these in

succession
Dense — 4 Softmax

TABLE I
M O D E L A R C H I T E C T U R E . F O R A L L C O N V O L U T I O N A L L AY E R S ,

T H E K E R N E L WA S 3×6, A N D G A P 1 D I S S H O R T F O R
G L O B A L AV E R A G E P O O L I N G 1 D . I N T H E C O N C AT E N AT I O N L AY E R ,

T H E C O U N T F E AT U R E S (16×1) A R E C O N C AT E N AT E D W I T H
C O N V O L U T I O N A L O U T P U T S T O F O R M T H E I N I T I A L I N P U T I N T O

T H E D E N S E L AY E R S .

wanted to capture the time series data of the different phone
states. The other binary features are independent of the time,
so these features are added in after the acceleration features
go through the convolution layers.

After the concatenation of inputs, our model has 6 dense
layers culminating in 4 outputs, which match the four classes
listed previously. Our model is shown in Figure 2 and a
description is shown in Table I. We have experimented with
other architecture, such as separate binary linear classifiers for
each phone state and separate neural net classifiers for each
phone state. However, we found out this multiclass neural net
classifier works best and has the highest accuracy rates. We
also experimented with the number of convolutional and dense
layers as well as the number of layer units and width of the
convolutional filters.

I V. E VA L U AT I O N

A. Data Collection Tools

a) Data Collection Software: To collect our data, we used
AppMon, an Android mobile logging application. AppMon
logs data from various smartphone sensors, including:

1) Accelerometer
2) Screen unlock count
3) Screen touch count
4) Screen On-off count
In our project, we will be using data from the sensors to

create features in order to classify and predict the location of
the phone.

The app collects accelerometer readings (X, Y, Z directions)
in units of m/s2 every 10ms. It also registers the timestamp at
which various trigger events occur (e.g. phone unlocks, screen
on, etc.)

b) Phones: We used diary studies on two phones to collect
data for the classifiers, a Nexus 5 and a Nexus 5X.

B. Diary Study

To obtain data for training and validation, three ‘diary studies’
were performed, all by the same participant.

In each study, the participant carried the phone around with
the monitoring app running and underwent a daily routine.
Whenever a change of state occurred, the participant recorded
the time (according to the phone) and the new state.

The first diary study was performed for 14.5 hours using
the Nexus 5X which was also used as the source of training as
well as validation data. The second and third diary studies were
performed using the Nexus 5 for 7 and 6 hours, respectively.
This data was used to check for cross-phone validation.

The distribution of the states during the diary study are
shown in Table II.

C. Data Preprocessing

a) Partitioning for k-fold cross validation: In normal k-
fold cross validation, the dataset is randomly partitioned into
k-folds. However, we wanted to ensure that for each fold,



TABLE II
D I S T R I B U T I O N O F S TAT E S F O R D I F F E R E N T D I A RY S T U D I E S

Diary/Phone State Duration Percent

Diary 1
Nexus 5X

Table 9.29 hours 63.5%
Pocket 0.49 hours 3.4%
Backpack 4.26 hours 29.2%
Hand 0.58 hours 3.9%

Diary 2
Nexus 5

Table 2.85 hours 40.0%
Pocket 1.45 hours 20.4%
Backpack 0.15 hours 2.1%
Hand 2.67 hours 37.5%

Diary 3
Nexus 5

Table 0.44 hours 6.1%
Pocket 0.60 hours 8.5%
Backpack 0.47 hours 6.6%
Hand 4.93 hours 69.4%

the validation set was not biased towards the training set.
Specifically, for any state, two samples collected at sequential
timesteps (e.g. sample A at 11:30:00 and sample B at 11:30:30
while the phone was in the user’s pocket) are likely to be very
similar. Then, if one sample were partitioned into the training
set and the other sample into the validation set, we suspected
that it could be the case that we observe a high validation
accuracy, but instead of learning a generalizable decision rule,
the network may have only learned to remember the class of
the sample in the training set and regurgitate that class when
seeing the very similar other sample in the validation set. Our
suspicions were confirmed when we observed that the cross-
validation accuracy was 9.22% higher when the dataset was
partitioned randomly instead of sequentially.

Accordingly, we decided to partition the data sequentially (i.e.
without randomization) for cross-validation. However, since
the data from our diary studies did not have equal proportions
of each class, it was possible for some folds to have a training
set with barely any instances of a class and then validate
on many instances of the same class that the network had
limited instances to train/learn from. To ensure that each fold
had comparable training and validation distributions for each
class, we preprocessed the diary study data before sequentially
partitioning it. Specifically, we divided the data of each diary
study into its contiguous segments (e.g. 10:00-11:15, Table
or 13:55-14:30, Hand), grouped those segments by class, and
then concatenated the segments together for each class. The
result was four homogenous datasets, one of each class, such
that for each fold, we could construct the validation set by
aggregating together 1

k of each class dataset and then construct
the training set by compiling the remaining k−1

k of each class
dataset. Within these homogenous class datasets, the data were
not randomized but kept sequential.

b) Accelerometer calibration across phones: We had
hoped that phone accelerometers would be consistent across
phones and models (i.e. both the Nexus 5 and Nexus 5X in
the same state would have the same accelerometer readings,
save for some noise). However, cursory comparison of the
accelerometer data between the two phones (while both phones
had been on the table) revealed both differing accelerometer

readings and readings that did not equal the expected values
of X = 0m/s2, Y = 0m/s2, and Z = 9.8m/s2.

In order to account for the inconsistent calibrations between
the accelerometers of different phones, we attempted to re-
calibrate the accelerometer data for each phone before using
it with the network. First, to see what type of recalibration
model was necessary (e.g. accelcalibrated = accelraw +C or
accelcalibrated = K(accelraw)+C), we taped the Nexus 5 and
Nexus 5X together, and then recorded the phones’ accelerations
in the four states. Plots of the two phones’ accelerations against
each other, Figure 3, over the same time period then suggested
a linear relationship of the form accelcalibrated = accelraw +C.
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Fig. 3. Graphs of the acceleration of the Nexus 5X (x1/y1/z1) against the
Nexus 5 (x2/y2/z2) while physically taped together over the same period of
time.

To find the calibration constants for each phone, we collected
accelerometer data from when the phone was flat on a table,
measured the acceleration in the X , Y , and Z directions and
then computed the offsets from the expected values of 0m/s2,
0m/s2, and 9.8m/s2. These offsets were then added to all of



the accelerometer data for that phone model. For practical
applications of our phone state classifier, we believe that this
calibration process could then be reasonably achieved by asking
phone users to place their phones flat on a table for a short
period of time (e.g. a minute) to allow the above calibration
constants to be calculated. To note, we do not know at this
point if the reason the sensor calibration is off is a property
unique to the phone or the phone model or both. Regardless,
we believe that this phone calibration method is a potential
solution for any of the above cases.

V. R E S U LT S

A. Single Phone Model

Using the architecture detailed in section 3, we trained the
network for 10 epochs and measured its effectiveness using
10-fold cross-validation. Training/validation data was compiled
from the diary study conducted with the Nexus 5X.

The average accuracy across all folds was 92%, and the
corresponding confusion matrix is shown in Table III. The
network is able to learn how to classify the Table state very
accurately, which is understandable given the consistent nature
of the state (i.e. always in a still, flat position). The states of
Backpack and Pocket were also classified with pretty moderate
accuracy, with the misclassifications likely stemming from the
more diverse nature of the two states (i.e. the user could have
been moving or still when the phone was in their backpack or
pocket). The Hand state was classified with the least accuracy,
and misclassified most often instead as the Backpack state.
These misclassifications likely also stem from the varied
positions of the Hand state, as in addition to the user using
the phone actively in their hand, they may also walk with their
phone in hand but just to hold the phone and not actually using
it.

One problem our classifier had was in distinguishing between
cases where the phone was flat on a table or still in a
non-moving backpack. For future work, we propose a post-
processing step after obtaining the classification output. In this
step, classifications from timeframes before and after the one
in question would be considered to help ‘smooth’ the outputs.

TABLE III
C O N F U S I O N M AT R I X O F T H E N E T W O R K P R E D I C T I O N S O N D I A RY
S T U D Y 1 ( N E X U S 5 X ) . E A C H E N T RY I N D I C AT E S T H E P E R C E N T

O F T O TA L I N S TA N C E S T H AT W E R E P R E D I C T E D A S T H E
P R E D I C T E D C L A S S B Y T H E N E T W O R K A N D L A B E L E D T H E

A C T U A L C L A S S .

Actual

Predicted Backpack Pocket Hand Table

Backpack 5.1% .8% .3% .1%
Pocket 1.1% 6.0% .2% .5%
Hand .1% .1% 7.2% .2%
Table .4% 3.3% .3% 74.1%

B. Multiple Phones

We also attempted to validate our networks across different
phones, by training on data collected by one phone model and

then validating on data collected on a different phone model.
Specifically, we first applied the calibration process described
in section 4.3 to both the Nexus 5X diary study data (Diary
Study 1) and Nexus 5 diary study data (Diary Study 2 and
Diary Study 3). We then trained a network of our proposed
architecture on the Nexus 5X data for 20 epochs, and validated
the network on the two separate Nexus 5 diary studies.

Validating on the first Nexus 5 diary study (Diary Study 2),
our network had an accuracy of 78%, significantly lower than
the accuracy observed in the single phone model case. The
confusion matrix shown in Table IV.

TABLE IV
C O N F U S I O N M AT R I X O F T H E N E T W O R K P R E D I C T I O N S O N D I A RY

S T U D Y 2 ( N E X U S 5 ) .

Actual

Predicted Backpack Pocket Hand Table

Backpack 34.2% 1.6% 1.7% 13.1%
Pocket .1% 18.5% .0% .0%
Hand 5.7% .0% .4% .0%
Table .0% .3% .0% 24.5%

Validating the second diary study, with the Nexus 5 (Diary
Study 3), our trained network had a validation accuracy of
91%–an accuracy much closer to the cross validation accuracy
demonstrated in the single phone model case. The confusion
matrix is shown in Table V.

TABLE V
C O N F U S I O N M AT R I X O F T H E N E T W O R K P R E D I C T I O N S O N D I A RY

S T U D Y 3 ( N E X U S 5 ) .

Actual

Predicted Backpack Pocket Hand Table

Backpack 5.3% 4.0% 1.3% .1%
Pocket .6% 3.7% .5% .1%
Hand .0% 1.4% 5.5% .1%
Table .9% .3% .0% 76.3%

The disparity in accuracy between the two different diary
studies with the Nexus 5 was unexpected, since both were
conducted within the same Nexus 5 device. We did not have
time to explore the root cause for this disparity, so we cannot
conclude definitely if a single network is applicable across
phone models. The results from Diary Study 3 (91% accuracy)
suggest that a linear calibration strategy may be effective, but
further investigation is needed for definitive understanding.

V I . C O N C L U S I O N

The work described in this paper describes the methodology
in applying deep learning to the task of determining the state
of a smartphone on the user’s person. To do this, we do not
require the user to be performing any specific action. Instead,
we utilize data from the accelerometer and screen, which are
both lightweight and readily available on Android phone models,
to identify four common phone positions that span most of
a user’s phone behavior and appear distinguishable from the



sensor data. We show that great accuracy can be achieved
when evaluating on a single phone model. Furthermore, we
propose an accelerometer calibration strategy for standardizing
phone accelerometer data across phone models, and show the
potential generalization of a network trained on data from a
single phone model to other phone models. However, our cross
model results are inconclusive. For future work, we plan to
strengthen these findings with the collection of more data,
specifically the hand and pocket cases as well as investigate
the classifier across phone models. We would also like to
experiment with the ‘smoothing’ of outputs and determine if
it can enhance accuracy.
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