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Abstract
We introduce a new defense against adversarial
patch attacks based on our proposed Robust Self-
Attention (RSA) layer. Robust Self-Attention re-
places the outlier-sensitive weighted mean opera-
tion used by standard Self-Attention with a robust
aggregation mechanism that detects and masks
outlier tokens. Vision Transformer (ViT) mod-
els using our RSA layer achieve promising ro-
bust classification accuracy, outperforming patch
adversarial training as well as a prior provable
defense, all with zero additional parameters or
training. Additionally, we provide further evi-
dence for the strength of simple patch adversarial
training as a baseline defense.

1. Introduction
Seeking a more realistic threat model than that of standard
adversarial examples (Gilmer et al., 2018), the robustness
community has explored many variations of patch adversar-
ial examples in prior work.

Prior work has suggested that patch adversarial examples op-
erate by inducing abnormally large class logit scores which
overwhelm the contribution of benign image regions (Rao
et al., 2020). Building off this insight, we design and evalu-
ate a new patch adversarial defense.

In this work we assume a common patch adversarial threat
model, where the attacker has whitebox access to the model
and computes image- and location-specific perturbations.
These perturbations consist of a single square patch of fixed
size which is known to the defender.

2. Related Work
2.1. Patch Adversarial Examples

Brown et al. (2017) explore universal adversarial patches
that can be applied at a variety of sizes and angles in the
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real world to fool image classifiers, while Karmon et al.
(2018) introduce the threat model explored in this work, in
addition to several related threat models. As in Rao et al.
(2020), we focus on untargeted attacks for their ease of use
in adversarial training.

2.2. Certifiable Patch Defenses

Following the success of certified robustness methods for
standard adversarial attacks (Gowal et al., 2018; Raghu-
nathan et al., 2018; Cohen et al., 2019), various works
have demonstrated varying degrees of certifiable robustness
against patch adversaries by applying interval bound prop-
agation (Chiang et al., 2020) and randomized smoothing
(Levine & Feizi, 2020).

Other methods use networks with limited receptive fields
(Brendel & Bethge, 2019) to provide robustness against
patch attacks, by robustly aggregating predictions from each
region of the image (Zhang et al., 2020; McCoyd et al.,
2020; Xiang et al., 2020; Xiang & Mittal, 2021).

Our method is inspired by this same intuition and takes ad-
vantage of the unique patch-based processing of the vision
transformer architecture to insert a robust aggregation mech-
anism into every Self-Attention layer. We do not explore
certified robustness in this work.

3. Robust Self-Attention
3.1. Self-Attention

We briefly review the Self-Attention layer (Vaswani et al.,
2017) at the center of the vision transformer (ViT) archi-
tecture (Dosovitskiy et al., 2020). Given a set of N token
vectors xi, query, key, and value vectors qi, ki, vi are com-
puted as an affine function of xi. N pair-wise attention
weights are then computed for each token xi via a scaled
dot product and normalized with softmax:

αi,j = softmaxj
qi · kj√
D

whereD is the dimension of all vectors. Finally, the updated
value for each token is computed by aggregating the value
vectors according to the pairwise attention weights specific
to each token:
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zi =

N∑
i=1

αi,jvj

The Self-Attention layer can be applied multiple times per
Transformer layer in parallel with different weights to form
Multi-headed Self-Attention, which is analogous to applying
multiple convolutional filters per layer of a convolutional
neural network.

3.2. Vision Transformer

The Vision Transformer (ViT) architecture (Dosovitskiy
et al., 2020) adapts transformer networks (Vaswani et al.,
2017) to images. To perform image classification, the input
image is first split into a set of contiguous, non-overlapping
square patches (generally 16× 16px). Each patch is treated
as a token for the attention mechanism.

Each internal layer of the vision transformer consists of a
Multi-headed Self-Attention layer applied to these tokens,
then a two-layer neural network is used to update the value
of each token. We apply a final classification layer to the
value of a particular token after the last Transformer layer to
compute the class logits. We refer the reader to the original
ViT paper (Dosovitskiy et al., 2020) for further details. The
intuition is that each token contains information about a
spatially localized region of the image, which we use in our
defense against patch attacks.

3.3. Robust Aggregation

Figure 1. An illustration of the proposed Robust Self-Attention
(RSA) layer, which replaces the weighted mean operation in Self-
Attention with a robust aggregation mechanism (RAG).

The final aggregation step in Self-Attention consists of a
weighted mean across tokens, which is sensitive to outliers
and therefore susceptible to adversarial manipulation. We
propose the Robust Self-Attention layer, shown in Figure 1.
RSA switches the weighted mean operation with a robust
aggregation mechanism we call RAG, and can be used as
a drop-in replacement for Self-Attention layers in the ViT
network without any finetuning or additional modification.

Single suspicious token. First, we address the simplified

setting in which only a single token lies within the window
of the adversarial patch. Define the anomaly score of an
image token as the L2 distance between the token’s value
vector and the mean of all value vectors corresponding to
image tokens (excluding the first classification token). The
image token with the highest anomaly score is presumed
untrustworthy and its value vector is replaced with the mean
value vector. All attention weights associated with the un-
trustworthy token are replaced with a value of 1/N , where
N is the total number of ViT tokens.

Multiple suspicious tokens. In practice, it is possible for
multiple ViT patches to fall within the window of a single
adversarial patch if the adversarial patch straddles the border
between two or more ViT patches. RAG accounts for this
by leveraging the spatial contiguity of the adversarial patch,
assuming knowledge of the maximum adversarial patch size.
We define the anomaly score s of a window w as the average
anomaly score of all tokens within the extent of w.

Now, the window w∗ with the highest anomaly score is
presumed untrustworthy and all vectors and weights corre-
sponding to tokens within w∗ are masked. In practice, we
need only to consider the set of windows covering unique
sets of ViT patches. Computing the window anomaly scores
can be implemented efficiently as an average pooling opera-
tion on the 2D grid of token anomaly scores.

Pseudocode for a single-headed version of RSA is given
in Algorithm 1. To accommodate multi-headed attention,
we average the anomaly scores across attention heads and
select the image token with the greatest overall anomaly
score.

Adversarial patch sizes. We note here that Robust Self-
Attention requires a single hyperparameter specifying the
size of the adversarial patches, which our threat model as-
sumes knowledge of. This in turn determines how many
contiguous image tokens are masked out by the RAG mech-
anism. When evaluating on adversarial patches of size 0, i.e.
clean images, RSA is equivalent to standard Self-Attention
as no patches are masked out. If more image tokens than
necessary are masked out, for instance when we assume a
non-zero adversarial patch size on clean images, accuracy
will suffer.

4. Methods
4.1. Dataset

We evaluate all methods on a random 100-class subset of
ImageNet which we refer to as ImageNet-100. Training is
performed on all 127k images, while accuracy is evaluated
on 512 randomly sampled images from the 100 classes.
Both training and evaluation are performed at the standard
image size of 224px.
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Algorithm 1 Pseudocode for single-headed Robust Self-
Attention.
input tokens {xi}, linear layers Q,K, V , the set of sliding

windowsW , number of tokens N , and token dimension
D

output tokens {zi}
function ROBUSTSELFATTENTION

for each 1 ≤ i ≤ N do
qi, ki, vi ← Q(xi),K(xi), V (xi)

end for
for each 1 ≤ i, j ≤ N do
αi,j ← SOFTMAXj qi · kj/

√
D

end for
return RAG({vi}, {αi,j})

end function
input values {vi}, attention weights {αi,j}
output tokens {zi}

function RAG
µ← MEAN2≤i≤N (vi)
for each w ∈ W do
s(w)←

∑
i∈w ||vi − µ||2

end for
w∗ ← ARGMAXW s(w)
for all i ∈ w∗ do vi, α∗,i ← µ, 1

N
for each 1 ≤ i ≤ N do
zi ←

∑
j αi,j · vj

end for
return {zi}

end function

4.2. Patch Adversaries

Existing untargeted L∞ attacks can be easily adapted for
patch attacks by fixing ε = 255/255, scaling up the attack
step size, and applying the adversarial perturbation δ to an
image x with

xadv = m� δ + (1−m)� x,

where � indicates element-wise multiplication and m is a
binary mask indicating where the patch is active (Rao et al.,
2020).

Training. We apply adversarial training, with PGD patch
attack (Kurakin et al., 2017; Madry et al., 2018). The attack,
which we call PatchPGD, uses 10 steps of PGD and a fixed
step size of 0.25, using basic SGD without momentum for
optimization. A single patch location within the image
extent is randomly sampled for each image during training,
and a single patch size is randomly sampled from U [10, 50]
for each training batch.

Evaluation. We evaluate the robustness of all models using
the more powerful AutoPGD (DLR) attack, taken from
AutoAttack (Croce & Hein, 2020). This attack, which we

call PatchAutoPGD, uses the standard AutoPGD parameters:
100 steps with an adaptive step size, optimized using SGD
with momentum. PatchAutoPGD is evaluated at evenly-
spaced patch locations along a grid with stride 20, following
Zhang et al. (2020). Consequently, 10px and 20px patches
are evaluated at 121 locations, 30px and 40px patches at
100 locations, and 50px patches at 81 locations.

4.3. Models

Undefended models. We use ResNet-50 (He et al., 2016)
as a baseline convolutional network. Our vision transformer
uses the DeiT-small model (Touvron et al., 2020), which we
refer to as ViT-small in order to emphasize the architecture
over the training details. Both models have a similar number
of parameters: 23M params for ResNet-50 and 22M params
for ViT-small.

We adapt a pre-trained network, trained on the full ImageNet
dataset, to our 100-class subset by replacing the original
1000-way linear layer L with a constructed 100-way linear
layer L′. The weight matrix of L′ consists of the submatrix
of L’s weight matrix corresponding to the 100 classes of
interest. The bias vector is similarly cut down to size, and
all other weights are left unchanged.

Adversarially trained models. We evaluate the effective-
ness of adversarial training at defending against patch at-
tacks. Our adversarially trained models are initialized with
weights from an undefended model and finetuned for 40
epochs with a batch size of 512 against PatchPGD. ResNet-
50 is trained using momentum SGD with learning rate 0.1,
momentum 0.9, and weight decay 5e-5. ViT-small is trained
using AdamW with a learning rate of 5e-6 and weight de-
cay of 5e-3. The learning rate is dropped by 10× halfway
through training, at 20 epochs.

Robust Self-Attention models. Our proposed method con-
sists of directly replacing the Self-Attention layers in ViT
with Robust Self-Attention layers without any additional
modifications. This can be performed on both undefended
models as well as models already trained against a patch
adversary, and we evaluate both. As discussed above, RSA
uses the known adversarial patch size to determine how
many image tokens to mask out during inference.

Clipped BagNet. We also evaluate Clipped BagNet (Zhang
et al., 2020), which clips per-patch BagNet-33 (Brendel &
Bethge, 2019) predictions using tanh(0.01x − 1), before
averaging into a single global prediction.

5. Results
As shown in Table 1, patch adversarially trained ViT-small
exhibits much lower robust accuracy at all attack sizes com-
pared to patch adversarially trained ResNet-50. The un-
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Robust accuracy
Network Clean 10px 20px 30px 40px 50px
Clipped BagNet 77.15 53.32 33.59 18.55 8.79 2.73
ResNet-50 90.63 40.23 9.18 1.17 0.00 0.00
+ PatchPGD adv. tr. 91.41 74.80 67.58 64.65 59.57 54.69
ViT-small 93.16 45.70 0.00 0.00 0.00 0.00
+ PatchPGD adv. tr. 91.60 68.16 45.90 31.45 25.78 14.84
+ RSA Tbl. 2 83.20 72.46 68.55 56.25 43.16
+ PatchPGD adv. tr. + RSA Tbl. 2 84.57 80.86 80.08 69.73 61.13

Table 1. Classification accuracy on clean and adversarial ImageNet-100 validation images with varying attack sizes. Clean accuracy of
ViT-RSA models depends on setting of patch size hyperparameter and is presented in Table 2. Best results are in bold.

Network 0px 10px 20px 30px 40px 50px
ViT-small + RSA 93.16 92.58 90.43 90.43 88.67 83.98
ViT-small + PatchPGD adv. tr. + RSA 91.60 89.45 88.09 88.09 87.11 84.18

Table 2. Classification accuracy on clean ImageNet-100 images of ViT-RSA models, under varying settings of known patch attack size.
0px assumes no attack and is equivalent to the standard ViT-small architecture evaluated on clean images.

defended ViT-small model also reaches 0% accuracy with
much smaller attacks (20px) than ResNet-50 (40px). How-
ever, our experiments indicate that simply replacing Self-
Attention with Robust Self-Attention provides a substantial
improvement to robust accuracy at all patch sizes.

Combining ViT-RSA with patch adversarial training further
improves robust accuracy, exceeding the robust accuracy
of ResNet-50 by more than 15.4% against 30px attacks.
Relative to patch adversarially trained ResNet-50, ViT-RSA
with patch adversarial training trades off clean accuracy for
robust accuracy against, as we can see in Table 2.

Notably and in contrast to standard adversarial training
(Tsipras et al., 2019; Zhang et al., 2019), patch adversarial
training actually improves clean accuracy— by 0.8% with
ResNet-50. Patch adversarial training may be viewed as a
form of cutout data augmentation (Devries & Taylor, 2017),
which is well-known to improve model performance. Sur-
prisingly, patch adversarial training hurts clean accuracy for
ViT-small by 1.6%.

6. Discussion
Baselines. Simple patch adversarial training is a surpris-
ingly strong baseline for defending convolutional neural
networks against patch attacks in practice, even without
location optimization (Rao et al., 2020). Further work is
needed to evaluate how much location optimization helps.

ViT architecture. Our experiments suggest that the ViT
architecture is more susceptible to adversarial patches than
ResNet-50, both when undefended and when trained against
patch adversaries. A significant possibility is that our hy-
perparameter tuning was insufficient for finding strong opti-
mization hyperparameters for ViT patch adversarial training

due to the difficulty of optimizing ViT models in general
(Chen et al., 2021b;a).

Sub-optimal training also help explain why patch adversarial
training improved clean accuracy for ResNet but hurt clean
accuracy for ViT. Indeed, for many hyperparameter settings
ResNet-50 achieves the highest robust validation accuracy
after a single epoch of patch adversarial training, whereas
ViT-small continues to slowly improve through training.

Robust aggregation mechanisms. We experimented with
a variety of robust aggregation mechanisms inspired by
the field of robust statistics. However, the simplest robust
aggregation mechanisms such as clipping, trimming, and
winsorization are not directly applicable to vector-valued
variables. Robust aggregation mechanisms which do operate
on vector-valued variables such as the weighted median
and weighted medoid are either computationally infeasible
(median) or yielded poor results (medoid).

Certified robustness. Our work raises the question of
whether it is possible to develop robust aggregation mecha-
nisms for ViTs that admit certified robustness proofs.

7. Conclusion
We introduced a new defense against patch adversarial ex-
amples which appears to outperform strong empirical base-
lines. While initial results are promising, further evaluation
is required to confirm the robustness of our method.
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Uesato, J., Arandjelović, R., Mann, T. A., and Kohli, P.
On the effectiveness of interval bound propagation for
training verifiably robust models. ArXiv, abs/1810.12715,
2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Karmon, D., Zoran, D., and Goldberg, Y. Lavan: Localized
and visible adversarial noise. In ICML, 2018.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial
machine learning at scale. ArXiv, abs/1611.01236, 2017.

Levine, A. and Feizi, S. (de)randomized smoothing
for certifiable defense against patch attacks. ArXiv,
abs/2002.10733, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. ArXiv, abs/1706.06083, 2018.

McCoyd, M., Park, W., Chen, S., Shah, N., Roggenkemper,
R., Hwang, M., Liu, J., and Wagner, D. A. Minority
reports defense: Defending against adversarial patches.
In ACNS Workshops, 2020.

Raghunathan, A., Steinhardt, J., and Liang, P. Cer-
tified defenses against adversarial examples. ArXiv,
abs/1801.09344, 2018.

Rao, S., Stutz, D., and Schiele, B. Adversarial training
against location-optimized adversarial patches. In ECCV
Workshops, 2020.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablay-
rolles, A., and J’egou, H. Training data-efficient im-
age transformers & distillation through attention. ArXiv,
abs/2012.12877, 2020.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy.
arXiv: Machine Learning, 2019.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. ArXiv, abs/1706.03762, 2017.

Xiang, C. and Mittal, P. Patchguard++: Efficient prov-
able attack detection against adversarial patches. ArXiv,
abs/2104.12609, 2021.

Xiang, C., Bhagoji, A., Sehwag, V., and Mittal, P. Patch-
guard: Provable defense against adversarial patches using
masks on small receptive fields. ArXiv, abs/2005.10884,
2020.

Zhang, H., Yu, Y., Jiao, J., Xing, E., Ghaoui, L., and Jor-
dan, M. I. Theoretically principled trade-off between
robustness and accuracy. In ICML, 2019.

Zhang, Z., Yuan, B., McCoyd, M., and Wagner, D. A.
Clipped bagnet: Defending against sticker attacks with
clipped bag-of-features. 2020 IEEE Security and Privacy
Workshops (SPW), pp. 55–61, 2020.


