
believe in

167

9 How Recursion Works

Little People and Recursion

downup

print count stop

print
equalp

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

The last two chapters were about how to write recursive procedures. This chapter is about
how to recursive procedures, and about understanding the process by which
Logo carries them out.

In Chapter 3, I introduced you to the metaphor of a computer full of little elves. Each elf
is an expert on a particular procedure. I promised that this metaphor would be helpful
later, when we’d have to think about two little people carrying out the same procedure at
the same time. Well, “later” is now.

I want to use the elf metaphor to think about the example of the previous
chapter:

Recall that we are imagining the computer to be full of elves, each of whom is a
specialist in carrying out some procedure. There are elves, elves,
elves, and so on. Each elf has some number of pockets, used to hold the inputs for
a particular invocation of a procedure. So a elf will have one pocket, while an

elf needs two pockets.

☞

168 Chapter 9 How Recursion Works

downup "hello

print :word

print thing "word

if equalp count :word 1 [stop]

downup
downup

downup

print if

downup
downup

hello

downup

print thing print
thing

thing
word word

word downup thing
hello print

We’re going to be most interested in the elves and the contents of their
pockets. To help you keep straight which elf is which, I’m going to name the
elves alphabetically: the first one will be Ann, then Bill, then Cathy, then David, and so
on. Since we aren’t so interested in the other elves, I won’t bother naming them.

If you’re reading this with a group of other people, you may find it helpful for each
of you to take on the role of one of the elves and actually stick words in your
pockets. If you have enough people, some of you should also serve as elves for the
primitive procedures used, like and .

What happens when you type the instruction

to Logo? The Chief Elf reads this instruction and sees that it calls for the use of the
procedure named . She therefore recruits Ann, an elf who specializes in that
procedure. Since has one input, the Chief Elf has to give Ann something to put
in her one pocket. Fortunately, the input you provided is a quoted word, which evaluates
to itself. No other elves are needed to compute the input. Ann gets the word in
her pocket.

Ann’s task is to carry out the instructions that make up the definition of .
The first instruction is

This, you’ll remember, is an abbreviation for

Ann must hire two more elves, a specialist and a specialist. The elf
can’t begin his work until he’s given something to put in his pocket. Ann asks the
elf to figure out what that input should be. The elf also gets an input, namely the
word . As we saw in Chapter 3, is what’s written on the name tag in Ann’s
pocket, since is the name of ’s input. So the elf looks in that pocket,
where it finds the word . That word is then given to the elf, who prints it
on your computer screen.

Ann is now ready to evaluate the second instruction:

Ann Bill

downup butlast :word

not

another

procedure invocation

instantiation
two

Little People and Recursion 169

if count thing
if count

hello if false
if [stop] stop

if true
if stop

false if

downup
downup

butlast thing
hell butlast hello

downup
word word

hello word hell

downup

word

Ann must hire several other elves to help her: an elf, a elf, and a
elf. I won’t go through all the steps in computing the inputs to ; since the of
the word is not 1, the first input to turns out to be the word . The
second input to is, of course, the list . (Notice that Ann does hire a
specialist. A list inside square brackets evaluates to itself, just like a quoted word, without
invoking any procedures. If the first input to had turned out to be , it would
have been the elf who would have hired a elf to carry out the instruction inside
the list.) Since its first input is , the elf ends up doing nothing.

Ann’s third instruction is

Here’s where things start to get interesting. Ann must hire specialist,
named Bill. (Ann can’t carry out this new instruction herself because she’s
already in the middle of a job of her own.) Ann must give Bill an input to put in his
pocket; to compute this input, she hires a elf and a elf. They eventually
come up with the word (the of), and that’s what Ann puts in Bill’s
pocket.

We now have two active elves, Ann and Bill. Each has a pocket. Both
pockets are named , but they have different contents: Ann’s pocket contains

, while Bill’s pocket contains .

Here is what this metaphor represents, in more technical language: Although there
is only one named , there can be more than one of that
procedure in progress at a particular moment. (An invocation of a procedure is also
sometimes called an of the procedure.) Each invocation has its own local
variables; at this moment there are variables named . It is perfectly possible for

global

procedure,
invocation

same

scroll, elves’ jackets.

first
then

170 Chapter 9 How Recursion Works

downup

word

downup1 downup2
word

word downup

downup

word
downup

print hell
hell hello thing

:word thing
word

if
downup downup

hel word

two variables to have the same name as long as they are associated with (local to) different
procedure invocations.

If you had trouble figuring out how works in Chapter 7, it’s almost certainly
because of a misunderstanding about this business of local variables. That’s what makes
the elf metaphor so helpful. For example, if you’re accustomed to programming in
BASIC, then you’re familiar with variables as the only possibility in the language.
If all variables were global in Logo, then there could only be one variable in the entire
computer named . Instead of representing variables as pockets in the elves’ clothes,
we’d have to represent them as safe deposit boxes kept in some central bank and shared
by all the elves.

But even if you’re familiar with Logo’s use of local variables, you may have been
thinking of the variables as being local to a instead of understanding that
they are local to an of a procedure. In that case you may have felt perfectly
comfortable with the procedures named , , and so on, each of them
using a separate variable named . But you may still have gotten confused when the

variable , the one belonging to the single procedure , seemed to have
several values at once.

If you were confused in that way, here’s how to use the elf metaphor to help yourself
get unconfused: Suppose the procedure definitions are written on scrolls, which are kept
in a library. There is only one copy of each scroll. (That is, there is only one definition for
a given procedure.) All the elves who specialize in a particular procedure, like ,
have to share the same scroll. Well, if variables were local to a procedure, they’d be
pockets in the rather than pockets in the By directing your attention
to the elves (the invocations) instead of the scrolls (the procedure definitions), you can
see that there can be two variables with the same name (), associated with the same
procedure (), but belonging to different invocations (represented by the elves
Ann and Bill).

We still have several more elves to meet, so I’m going to pass over some of the details
more quickly now. We’ve just reached the point where Bill is ready to set to work. For
his first instruction he hires a elf, who prints the word on your screen. Why

and not ? The answer is that when Bill hires a expert to evaluate the
expression , the rules say that that expert must look in Bill’s pockets,

(if Bill didn’t have a pocket named) in Ann’s pockets.

Bill then carries out the instruction, which again has no effect. Then Bill is ready
for the instruction. He hires a third elf, named Cathy. Bill puts the
word in Cathy’s pocket. There are now three elves, all with pockets named ,
each with a different word.

repeat 100 [print "hello if equalp random 5 0 [stop]]

not

seven

lowest-level invocation of a user-defined procedure.

Little People and Recursion 171

hel
if downup

downup he

downup
he if

count he
downup h

h if
if true count

h if
[stop] stop

if stop
stop If stop

stop
downup

stop

stop
if if

stop

hello

stop repeat

Cathy is now ready to get to work. Don’t forget, though, that Ann and Bill haven’t
finished their jobs. Bill is still working on his third instruction, waiting for Cathy to report
the completion of her task. Similarly, Ann is waiting for Bill to finish.

Cathy evaluates her first instruction, printing on the screen. She evaluates the
instruction, with no effect. Then she’s ready for the instruction, the third

one in the procedure definition. To carry out this instruction, she hires David, a fourth
expert. She puts the word in his pocket.

David’s career is like that of the other elves we’ve met so far. He starts by
printing his input, the word . He evaluates the instruction, with no effect. (The

of the word is still not equal to 1.) He then gets to the recursive invocation of
, for which he hires a fifth expert, named Ellen. He puts the word in Ellen’s

pocket.

Ellen’s career is quite like that of the other elves. It starts similarly: she prints
her input, the word , on your screen. Then she prepares to evaluate the instruction.
This time, though, the first input to turns out to be the word , since the
of is, indeed, 1. Therefore, the elf evaluates the instruction contained in its second
input, the list . It hires a elf, whose job is to tell Ellen to stop working.
(Why Ellen? Why not one of the other active elves? There are elves active at the
moment: Ann, Bill, Cathy, David, Ellen, the elf, and the elf. The rule is that
a elf stops the and are
primitives, so they don’t satisfy the elf. The remaining five elves are experts in

, a user-defined procedure; of the five, Ellen is the lowest-level invocation.)

(By the way, the insistence of on a user-defined procedure to stop is one of the
few ways in which Logo treats such procedures differently from primitive procedures. If
you think about it, you’ll see that it would be useless for to stop just the invocation
of . That would mean that the instruction would never do anything of interest
and there would be no way to stop a procedure of your own conditionally. But you can
imagine other situations in which it would be nice to be able to a primitive. Here’s
one:

If it worked, this instruction would print the word some number of times, up to
100, but with a 20 percent chance of stopping after each time. In fact, though, you can’t
use to stop a invocation.)

Let’s review what’s been printed so far:

☞

his own

172 Chapter 9 How Recursion Works

downup

:word
word thing

word he

print hel
word

hell
hello

downup

inout

hello printed by Ann
hell printed by Bill
hel printed by Cathy
he printed by David
h printed by Ellen

print :word

hello printed by Ann
hell printed by Bill
hel printed by Cathy
he printed by David
h printed by Ellen
he printed by David
hel printed by Cathy
hell printed by Bill
hello printed by Ann

Ellen has just stopped. She reports back to David, the elf who hired her. He’s been
waiting for her; now he can continue with his own work. David is up to the fourth and
final instruction in the definition of :

What word will David print? For David, refers to the contents of pocket
named . That is, when David hires a expert, that expert looks first in David’s
pockets, before trying Cathy’s, Bill’s, and Ann’s. The word in David’s pocket is .
So that’s what David prints.

Okay, now David has reached the end of his instructions. He reports back to his
employer, Cathy. She’s been waiting for him, so that she can continue her own work.
She, too, has one more instruction to evaluate. She has the word in her

pocket, so that’s what she prints.

Cathy now reports back to Bill. He prints his own word, . He reports back to
Ann. She prints her word, .

When Ann finishes, she reports back to the Chief Elf, who prints a question mark on
the screen and waits for you to type another instruction.

Here is the complete effect of this instruction:

You might want to see if the little person metaphor can help you understand the
working of the procedure from Chapter 7. Remember that each elf carrying out
the recursive procedure needs two pockets, one for each input.

Tracing

trace "downup
downup "logo

sequential

tracing

Tracing 173

downup
downup print

downup
downup

downup

downup

(downup "logo)

(downup "log)

(downup "lo)

(downup "l)

downup stops

downup stops

downup stops

downup stops

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

?
?

logo

log

lo

l

lo

log

logo

Many people find the idea of multiple, simultaneous invocations of a single procedure
confusing. To keep track of what’s going on, you have to think about several “levels” of
evaluation at once. “Where is up to right now?” — “Well, it depends what you
mean. The lowest-level invocation has just evaluated its first instruction.
But there are three other invocations of that are in the middle of evaluating
their recursive instructions.” This can be especially confusing if you’ve always
been taught that the computer can only do one thing at a time. People often emphasize
the nature of the computer; what we’ve been saying about recursion seems to
violate that nature.

If this kind of confusion is a problem for you, it may help to think about a procedure
like by its progress. That is, we can tell the procedure to print out extra
information each time it’s invoked, to help you see the sequence of events.

Just for reference, here’s again:

The trace command takes a procedure name (or a list of procedure names, to trace more
than one) as its input. It tells Logo to notify you whenever that procedure is invoked:

log

lo

l

lo

log

Level and Sequence

downup

downup

l

downup

downup
logo downup log

downup

downup

downup

(downup "log)

downup stops

(downup "lo)

(downup "l)

downup stops

downup stops

level

vertically, sequence

horizontally,
levels

174 Chapter 9 How Recursion Works

To make this result a little easier to read, I’ve printed the lines that are generated by the
tracing in smaller letters than the lines generated by itself. Of course the actual
computer output all looks the same.

Each line of tracing information is indented by a number of spaces equal to the
number of traced procedure invocations already active—the of procedure invocation.
By looking only at the lines between one invocation and the equally-indented
stopping line, you can see how much is accomplished by each recursive call. For example,
the innermost invocation (at level 4) prints only the letter .

The result of tracing is most helpful if you think about it two-dimensionally.
If you read it it represents the of instructions that fits the traditional
model of computer programming. That is, the order of the printed lines represents the
order of events in time. First the computer enters at level 1. Then it prints
the word . Then it enters at level 2. Then it prints . And so on.
Each printed line, including the “official” lines as well as the tracing lines, represents a
particular instruction, carried out at a particular moment. Reading the trace vertically
will help you fit ’s recursive method into your sequential habits of thought.

On the other hand, if you read the trace it shows you the hierarchy
of of ’s invocations. To see this, think of the trace as divided into two
overlapping columns. The left column consists of the official pattern of words printed by
the original . In the right column, the pattern of entering and exiting from each
level is shown. The lines corresponding to a particular level are indented by a number of
spaces that corresponds to the level number. For example, find the line

and the matching

Between these two lines you’ll see this:

☞

Instruction Stepping

log
lo
l
lo
log

log

...

log

log
lo l lo

downup

downup if
print step

downup

(downup "log)

(downup "lo)

downup stops

downup stops

part of

directly

total
direct

Instruction Stepping 175

What this shows is that levels 3 and 4 are level 2. You can see that the traced
invocation and stopping lines for levels 3 and 4 begin further to the right than the ones
for level 2. Similarly, the lines for level 4 are further indented than the ones for level 3.
This variation in indentation is a graphic display of the superprocedure/subprocedure
relationships among the various invocations.

There are two ways of thinking about the lines that aren’t indented. One way is to
look at all such lines within, say, level 2:

This tells you that those five lines are printed somehow within the activity of level 2. (In
terms of the little people metaphor, those lines are printed by Bill, either directly or
through some subordinate elf.) Another way to look at it is this:

What this picture is trying to convey is that only the two lines are within the
control of level 2. The three shorter lines (, ,) are delegated to level 3.

We’ve seen three different points of view from which to read the trace, one vertical
and two horizontal. The vertical point of view shows the sequence of events in time. The
horizontal point of view can show either the responsibility of a given level or the

responsibility of the level. To develop a full understanding of recursion, the trick is
to be able to see all of these aspects of the program at the same time.

Try invoking the traced with a single-letter input. Make a point of reading
the resulting trace from all of these viewpoints. Then try a two-letter input.

Perhaps you are comfortable with the idea of levels of invocation, but confused about the
particular order of instructions within . Why should the instruction be where
it is, instead of before the first , for example? Logo’s command will allow
you to examine each instruction line within as it is carried out:

>>>

trace step

?
?

ant

an

a

an

ant

?
?
?

ant

an

a

an

ant

176 Chapter 9 How Recursion Works

step "downup
downup "ant

step "downup
trace "downup
downup "ant

After each of the lines ending with , Logo waits for you to press the RETURN or
ENTER key.

You can combine and :

[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[print :word] >>>

[print :word] >>>

(downup "ant)
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
(downup "an)
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
(downup "a)
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
downup stops

[print :word] >>>

downup stops
[print :word] >>>

downup stops

☞

Instruction Stepping 177

(downup "an)

downup stops

step trace

trace step untrace
unstep

downup
downup downup

print

an if
downup downup

a

downup

In this case, the lines are indented to match the lines.

Once a procedure is d or ped, it remains so until you use the
or command to counteract the tracing or stepping.

Try drawing a vertical line extending between the line

and the equally indented

Draw the line just to the left of the printing, after the indentation. The line you drew
should also touch exactly four instruction lines. These four lines make up the entire
definition of the procedure. If we restrict our attention to one particular
invocation of , like the one you’ve marked, you can see that each of ’s
instructions is, indeed, evaluated in the proper sequence. Below each of these instruction
lines, you can see the effect of the corresponding instruction. The two instructions
each print one line in the left (unindented) column. (In this case, they both print the
word .) The instruction has no visible effect. But the recursive invocation of

has quite a large effect; it brings into play the further invocation of with
the word as input.

One way to use the stepping information is to “play computer.” Pretend you are the
Logo interpreter, carrying out a instruction. Exactly what would you do, step by
step? As you work through the instructions making up the procedure definition, you can
check yourself by comparing your activities to what’s shown on the screen.

