
3 Variables

invoke
define

name.

39

User Procedures with Inputs

greet

hello

greet
greet

greet
greet

to

greet "Brian

greet "Emma

to greet :person

?
Hello, Brian
Pleased to meet you.
?
Hello, Emma
Pleased to meet you.

?

In the last chapter I suggested that you would find yourself limited in writing new
procedures because your procedures don’t take inputs, so they do exactly the same thing
every time you use them. In this chapter we’ll overcome that limitation.

As a first example I’m going to write a very simple command named , which will
take a person’s name as its one input. Here’s how it will work:

This procedure will be similar to the command in the last chapter, except that
what it prints will depend on the input we give it.

Each time we , we want to give it an input. So that Logo will expect an
input, we must provide for one when we . (Each procedure has a definite
number of inputs; if takes one input once, it must take one input every time it’s
invoked.) Also, in order for the instructions inside to be able to use the input,
we must give the input a Both of these needs are met in the command that
supplies the title line for the procedure:

>
>
>
?

greet "Brian

print sentence "Hello, thing "person
print [Pleased to meet you.]
end

not

not

procedure input

variable.
name thing value parts of

is
word,

40 Chapter 3 Variables

to greet

:person
greet

person
greet Brian Emma

person

person
to to

greet
person

print sentence

thing

Thing
thing

person
person Person

You are already familiar with the use of the command, the need for a word like
to name the procedure, and the appearance of the greater-than prompt instead of the
question mark. What’s new here is the use of after the procedure name. This
addition tells Logo that the procedure will require one input and that the name
of the input will be . It may help to think of the input as a container; when the
procedure is invoked, something (such as the word or the word)
will be put into the container named .

Why is the colon used in front of the name ? Remember that the inputs
to , unlike the inputs to all other Logo procedures, are evaluated before is
invoked. Later we’ll see that a colon has a special meaning to the Logo evaluator, but
that special meaning is in effect in a title line. Instead, the colon is simply a sort of
mnemonic decoration to make a clear distinction between the word , which is a

name, and the word , which is an name. Some versions of Logo
don’t even require the colon; you can experiment with yours if you’re curious. (By the
way, if you want to sound like a Logo maven, you should pronounce the colon “dots,” as
in “to greet dots person.”)

To see why having a name for the input is helpful, look at the rest of the procedure
definition:

You already know about and and about quoting words with the
quotation mark and quoting lists with square brackets. What’s new here is the procedure

.

is an operation. It takes one input, which must be a word that’s the name of
a container. The output from is whatever datum is in the container.

The technical name for what I’ve been calling a “container” is a Every
variable has a and a (or). The name and the thing are both the
variable. We’ll sometimes speak loosely of “the variable ,” but you should realize
that this speaking loosely; what we should say is “the variable named .”
itself is a which is different from a variable.

When I type the instruction

person

SENTENCE

PRINT

THING
Hello,

greet first [Brian Harvey]

greet person
greet Brian

first [Brian Harvey]
Brian

name, thing.
type of

thing

User Procedures with Inputs 41

formal parameter. actual
argument.

actual argument expression,
actual argument value,

greet
greet

"Brian
Brian

greet

greet
greet

person Brian
greet

greet
sentence

greet

thing person thing
person Brian

Brian se

* While reading the definition of , it’s easy to say “the input is ”; then, while
reading an invocation of , it’s easy to say “the input is .” To avoid confusion between
the input’s name and its value, there are more precise technical terms that we can use when
necessary. The name of the input, given in the title line of the procedure definition, is called a

The value of the input, given when the procedure is invoked, is called an
In case the actual argument is the result of a more complicated subexpression, as in the

instruction

we might want to distinguish between the ,
and the which is the word .

the Logo interpreter starts with the first word on the line, . As usual, Logo takes
this to be the name of a procedure. Logo discovers that requires one input, so
it continues to the next thing on the line. This is a quoted word, . Since it’s
quoted, it requires no further interpretation. The word itself becomes the input
to .*

Logo is now ready to invoke . The first step, before evaluating the instruction
lines in , is to create a variable to hold the input. This variable is given the word

as its and the word as its (Please notice that I don’t have
to know the name of ’s input in order to use it. All I have to know is what

—a person’s name— expects as its input. What are the names of the inputs
to a primitive like ? We don’t know and we don’t need to know.)

Logo now evaluates the first instruction in . The process is just like the ones
we went through in such detail in Chapter 2. In the course of this evaluation Logo invokes
the procedure with the word as its input. The output from is
the thing in the variable named , namely the word . That’s how the word

becomes one of the inputs to . Here’s a plumbing diagram.

Your driver’s
name is:

John Smith

thing

thing
thing

What Kind of Container?

name

value

one

name
value

42 Chapter 3 Variables

One of the favorite activities that Logo experts use to while away the time when the
computer is down is to argue about the best metaphor to use for variables. A variable is a
container, but what kind of container?

One popular metaphor is a mailbox. The mailbox has a painted on it, like
“The Smiths.” Inside the mailbox is a piece of mail. The person from the Post Office
assigns a to the box by putting a letter in it. Reading a letter is like invoking
on the mailbox.

I don’t like this metaphor very much, and if I explain why not, it may help illuminate
for you some details about how variables work. The first problem is that a real mailbox
can contain several letters. A variable can only contain thing or value. (I should say
“one thing at a time,” since we’ll see that it’s possible to replace the thing in a variable
with a different thing.)

Another problem with the mailbox metaphor is that to read a letter, you take it out
of the mailbox and tear it open. Then it isn’t in the mailbox any more. When you invoke

to look at the thing in a variable, on the other hand, it’s still in the variable. You
could use again and get the same answer.

There are two metaphors that I like. The one I like best won’t make sense for a while,
until we talk about scope of variables. But here is the one I like second best: Sometimes
when you take a bus or a taxi, there is a little frame up in front that looks like this:

The phrase “your driver’s name is” is like a label for this frame, and it corresponds to the
of a variable. Each bus driver has a metal or plastic plate that says “John Smith” or

whoever it is. The driver inserts this plate, which corresponds to the of the variable,
into the frame. You can see why this is a closer metaphor than the mailbox. There is only
one plate in the frame at a time. To find out who’s driving the bus, you just have to look
inside the frame; you don’t have to remove the plate.

(To be strictly fair I should tell you that some Logoites don’t like the whole idea of
containers. They have a completely different metaphor, which involves sticking labels on
things. But I think it would only confuse you if I explained that one right now.)

primer "Paul

not

More Procedures 43

An Abbreviation

More Procedures

greet

thing
thing

:narf
thing "narf

thing "person

:person

print sentence "hello :person

to primer :name
print (sentence first :name [is for] word :name ".)
print (sentence "Run, word :name ", "run.)
print (sentence "See :name "run.)
end

?
P is for Paul.
Run, Paul, run.
See Paul run.

Examining the value of a variable is such a common thing to do in a Logo procedure that
there is a special abbreviation for it. Instead of the expression

you can simply say

So in the procedure, we could have said

Please note that the colon is just an abbreviation for the word but rather for
the combination -quote.

When drawing plumbing diagrams, treat as if it were spelled out as
.

It’s time to invent more procedures. I’ll give you a couple of examples and you should
make up more on your own.

soap.opera "Bill "Sally "Fred

interactive

44 Chapter 3 Variables

Primer
word sentence

Soap.opera

soap.opera

Readlist

Readlist

to soap.opera :him :her :it
print (sentence :him "loves word :her ".)
print (sentence "However, :her [doesn’t care for] :him "particularly.)
print (sentence :her [is madly in love with] word :it ".)
print (sentence :him [doesn’t like] :it [very much.])
end

?
Bill loves Sally.
However, Sally doesn’t care for Bill particularly.
Sally is madly in love with Fred.
Bill doesn’t like Fred very much.

to converse
print [Please type your full name.]
halves readlist
end

to halves :name
print sentence [Your first name is] first :name
print sentence [Your last name is] last :name
end

uses the extra-input kludge I mentioned near the end of Chapter 2. It also shows
how the operations and can be used in combination to punctuate a
sentence properly.

With all of these examples, incidentally, you should take the time to work through
each instruction line to make sure you understand what is the input to what.

In this example you see that a procedure can have more than one input.
has three inputs. You can also see why each input must have a name, so that the
instructions inside the procedure have a way to refer to the particular input you want to
use. You should also notice that has a period in the middle of its name,
not a space, because the name of a procedure must be a single Logo word.

For the next example I’ll show how you can write an procedure, which
reads something you type on the keyboard. For this we need a new tool. is
an operation with no inputs. Its output is always a list, containing whatever you type on a
single line (up to a RETURN). waits for you to type a line, then outputs what
you type.

converse

Brian Harvey

program
top-level

procedure.
subprocedure

superprocedure

relative

More Procedures 45

converse halves
Converse

converse
Halves converse

halves converse converse
halves

Halves
Converse halves converse

sentence halves

readlist

?
please type your full name.

Your first name is Brian
Your last name is Harvey

po [converse halves]

to incorrect.converse
print [Please type your full name.]
print sentence [Your first name is] first readlist
print sentence [Your last name is] last readlist
end

This program includes two procedures, and . (A is a bunch
of procedures that work together to achieve a common goal.) is the

In other words, is the procedure that you invoke at the question-
mark prompt to set the program in motion. is a of , which
means that is invoked by an instruction inside . Similarly,
is a of .

There are two things you should notice about the terminology “subprocedure” and
“superprocedure.” The first thing is that these are terms. It doesn’t mean
anything to say “ is a subprocedure.” Any procedure can be used as part of a
larger program. , for example, is a superprocedure of , but
might at the same time be a subprocedure of some higher-level procedure we haven’t
written yet. The second point is that primitive procedures can also be considered as
subprocedures. For example, is a subprocedure of .

(Now that we’re dealing with programs containing more than one defined procedure,
it’s a good time for me to remind you that the commands that act on procedures can
accept a list as input as well as a single word. For example, you can say

and Logo will print out the definitions of both procedures.)

Why are two procedures necessary for this program? When the program reads your
full name, it has to remember the name so that it can print two parts of it separately. It
wouldn’t work to say

because each invocation of would read a separate line from the keyboard
instead of using the same list for both first and last names. We solve this problem by using

☞

conj "jouer

46 Chapter 3 Variables

readlist converse

Hi ignore Ignore

ignore Ignore

hi

readlist
readlist

ignore

er

to hi
print [Hi. What’s your name?]
print sentence [How are you,] word first readlist "?
ignore readlist
print [That’s nice.]
end

to ignore :something
end

ignore readlist

?
je joue
tu joues
il joue
nous jouons
vous jouez
elles jouent

the output from as the input to a subprocedure of and letting the
subprocedure do the rest of the work.

One of the examples in Chapter 1 was this procedure:

uses a procedure called that we haven’t yet discussed. is predefined
in Berkeley Logo but would be easy enough to define yourself:

That’s not a misprint; really has no instructions in its definition. is a
command that takes one input and has no effect at all! Its purpose is to ignore the input.
In , the instruction

waits for you to type a line on the keyboard, then just ignores whatever you type. (We
couldn’t just use as an instruction all by itself because a complete instruction
has to begin with a command, not an operation. That is, since outputs a
value, there must be a command to tell Logo what to do with that value. In this case, we
want to it.)

Write a procedure to conjugate the present tense of a regular first-conjugation (-er)
French verb. (Never mind if you don’t know what any of that means! You’re about to
see.) That is, the letters at the end of the verb should be replaced by a different
ending for each pronoun:

My other car

is a Mercedes

An Aside on Variable Naming

An Aside on Variable Naming 47

jouer jou
er e es

monter frapper garder

person
name it him
her it

him1 him2

The verb (to play) consists of the root combined with the infinitive ending
. Print six lines, as shown, in which the ending is changed to , , etc. Try your

procedure on (to climb), (to hit), and (to keep).

By the way, in a practical program we would have to deal with the fact that French
contains many irregular verbs. In addition to wildly irregular ones like être (to be,
irregular even in English) there are ones like manger, to eat, which are almost regular
except that the first and second person plural forms keep the letter e: nous mangeons.
Many issues in natural language programming (that is, getting computers to speak or
understand human language) turn out like this—90% of the cases are trivial, but most of
your effort goes into the other 10%.

In my metaphor about the frame containing the bus driver’s name, the inscription on
the frame tells you what to expect inside the frame. Variable names like and

serve a similar purpose. (You might argue that the in the group of names ,
, and is a little misleading. But it serves to keep the story straight, probably better

than an alternative like and .)

Another kind of frame is the one you sometimes see around a car’s license plate:

I know it’s pedantic to pick apart a joke, but just the same I want to make the point that
this one works only because the car itself provides enough clues that what belongs in the
frame is indeed a license plate. If you were unfamiliar with the idea of license plates, that
frame wouldn’t help you.

The computer equivalent of this sort of joke is to give your variables names that don’t
reflect their purpose in the procedure. Some people like to name variables after their
boyfriends or girlfriends or relatives. That’s okay if you’re writing simple programs, like
the ones in this chapter, in which it’s very easy to read the program and figure out what
it does. But when you start writing more complicated programs, you’ll need all the help
you can get in remembering what each piece of the program does. I recommend starting
early on the habit of using sensible variable names.

X

x

x

Second first

output Output

print second [the red computer]

Don’t Call It

Writing New Operations

require

effect output

48 Chapter 3 Variables

to second :thing
output first butfirst :thing
end

?
red

Another source of trouble in variable naming is lazy fingers. When I’m teaching
programming classes, a big part of my job is reading program listings that students bring
to me, saying, “I just can’t find the bug in this program.” I have an absolute rule that I
refuse to read any program in which there is a variable named .

My students always complain about this arbitrary rule at first. But more often than
not, a student goes through a program renaming all the variables and then finds that the
bug has disappeared! This magical result comes about because when you use variable
names like , you run the risk of using the same name for two different purposes at the
same time. When you pick reasonable names, you’ll pick two different names for the two
purposes.

It is people who’ve programmed in BASIC who are most likely to make this mistake.
For reasons that aren’t very important any more, BASIC used to single-letter
variable names. Even now there are limits on longer names in most versions of BASIC
that make it risky to use more than two or three letters in a name. So if you’re a BASIC
programmer, you’ve probably gotten into bad habits, which you should make a point of
correcting.

So far all the procedures we’ve written have been commands. That is, our procedures
have had an (like printing something) rather than an to be used with other
procedures. You can also write operations, once you know how to give your procedure
an output. Here is an example:

is an operation with one input. Like the primitive operation , it extracts a
component of its input, either a character from a word or a member from a list. However,
it outputs the second component instead of the first one.

What is new in this procedure definition is the use of the primitive command
. can be used only inside a procedure definition, not at top level. (In

☞

Scope of Variables

command,
operation.

Scope of Variables 49

thing "thing

?
should I have known better?
?
are you experienced?

print query [I should have known better]

print query [you are experienced]

output

output
output output

second

output print

thing second
Thing

thing
thing

:thing

thing thing

query

other words, not when you are typing in response to a question-mark prompt.) It takes
one input, which can be any datum. The effect of is to make the datum you
supply as its input be the output from your procedure.

Some people find it confusing that itself is a even though a
procedure that uses is an But it makes sense for to be the
head of a complete instruction. The effect of the instruction is to inform Logo what
output you want your procedure (the procedure named in this case) to supply.

Another possible confusion is between and . The problem is that
people talk about “computer output” while waving a stack of paper at you, so you think
of “output” as meaning “stuff the computer printed.” But in Logo, “output” is something
one procedure hands to another procedure, not something that is printed.

I chose the name for the input to to remind myself that the input can
be anything, word or list. is also, as you know, the name of a primitive procedure.
This is perfectly okay. The same word can name both a procedure and a variable. Logo
can tell which you mean by the context. A word that is used in an instruction without
punctuation is a procedure name. A word that is used as an input to the procedure

is a variable name. (This can happen because you put dots in front of the word
as an abbreviation or because you explicitly typed and used the word as its input.)
The expression is an abbreviation for

in which the first names a procedure, and the second names a variable.

Write an operation that takes a sentence as input and that outputs a question
formed by swapping the first two words and adding a question mark to the last word:

This is going to be a somewhat complicated section, and an important one, so slow down
and read it carefully.

When one procedure with inputs invokes another procedure with inputs as a
subprocedure, it’s possible for them to share variables and it’s also possible for them to

top "a "b

50 Chapter 3 Variables

outer
top Bottom outer bottom :outer

outer
top a outer

a b b c
c v v

c v

If a procedure refers to a variable that does not belong to that procedure,
Logo looks for a variable of that name in the superprocedure of that
procedure.

to top :outer :inner
print [I’m in top.]
print sentence [:outer is] :outer
print sentence [:inner is] :inner
bottom "x
print [I’m in top again.]
print sentence [:outer is] :outer
print sentence [:inner is] :inner
end

to bottom :inner
print [I’m in bottom.]
print sentence [:outer is] :outer
print sentence [:inner is] :inner
end

?
I’m in top.
:outer is a
:inner is b
I’m in bottom.
:outer is a
:inner is x
I’m in top again.
:outer is a
:inner is b

have separate variables. The following example isn’t meant to do anything particularly
interesting, just to make explicit what the rules are.

First, concentrate on the variable named . This name is used for the first input to
. doesn’t have an input named . When refers to ,

since it doesn’t have one of its own, the reference is to the variable that belongs
to its superprocedure, . That’s why is printed as the value of in both
procedures.

Suppose procedure invokes procedure , and invokes . Suppose an instruction
in procedure refers to a variable . First Logo tries to find a variable named that
belongs to . If that fails, Logo looks for a variable named that belongs to procedure

The Little Person Metaphor

there are two variables
named

local

dynamic scope,

actors scripts.

The Little Person Metaphor 51

b c b v
a

inner
inner top

inner b top bottom bottom
inner x bottom top

inner inner top
bottom

inner

print
butfirst bottom greet

Variables that belong to a procedure are temporary. They exist only
so long as that procedure is active. If one procedure has a variable
with the same name as one belonging to its superprocedure, the latter is
temporarily “hidden” while the subprocedure is running.

. Finally, if neither nor has a variable named , Logo looks for such a variable that
belongs to procedure .

Now look at . The important thing to understand is that
, one belonging to each procedure. When is invoked, its input named

gets the word as its value. When invokes , ’s input (which
is also named) gets the value . But when finishes, and continues,
the name once again refers to the variable named that belongs to .
The one that belongs to has disappeared.

Because each procedure has its own variable named , we refer to the procedure
input variables as to a particular procedure. Inputs are always local in Logo. There
is also a name for the fact that a procedure can refer to variables belonging to its
superprocedures. If you want to show off, you can explain to people that Logo has

which is what that rule is called.

Earlier I told you my second favorite metaphor about variables. My very favorite is an old
one, which Logo teachers have been using for years. It is a metaphor about procedures as
well as variables, which is why I didn’t present it earlier. Now that you’re thinking about
the issue of variable scope, you can see that to have a full understanding of variables, you
have to be thinking about procedures at the same time.

The metaphor is that inside the computer there is a large community of little people.
Each person is a specialist at a particular procedure. So there are people and

people and people and people. I like to think of these
people as elves, because I started teaching Logo on a computer called a PDP-11, and I
like the pun of an elf inside an 11. But if you find elves too cute or childish, perhaps
you should think of these people as doctors in white coats, specializing in dermatology
or ophthalmology or whatever. Another terminology for the same idea, one which is
becoming more and more widely used in advanced computer science circles, is to call the
little people and to call their procedures Each actor has only one script, but
several actors can have the same script.

an
expert in itself;

52 Chapter 3 Variables

top "a "b

print [I’m in top.]

print sentence [:outer is] :outer

print sentence

top
a b

[I’m in top.]
print

sentence

thing
:outer thing "outer

In any case, what’s important is that when a procedure is invoked, a little person
who is an expert on that procedure goes to work. (It’s important that the person is

the procedure, and not the procedure we’ll see later that there can be two
little people carrying out the same procedure at the same time. This is one of the more
complicated ideas in Logo, so I think the expert metaphor will help you later.)

You may be wondering where the variables come in. Well, each elf is wearing a
jerkin, a kind of vest, with a bunch of pockets. (If your people are doctors, the pockets
are in those white lab coats.) A person has as many pockets as the procedure he or she
knows has inputs. A expert has one pocket; a expert has two. Each
pocket can contain a datum, the value of the variable. (The pockets are only big enough
for a single datum.) Each pocket also has a name tag sewn on the inside, which contains
the name of the variable.

The name tags are on the inside to make the point that other people don’t need to
know the names of an expert’s variables. Other experts only need to know how many
pockets someone has and what kind of thing to put in them.

When I typed

the Chief Elf (whose name is Evaluator) found an elf named Theresa, who is a
expert, and put an in her first pocket and a in her second pocket.

Theresa’s first instruction is

To carry out that instruction, she handed the list to another elf named
Peter, a expert.

Theresa’s second instruction is

To carry out this instruction, Theresa wanted to hire Peter again, but before she could
give him his orders, she first had to deal with Sally, a expert. (This is the old
evaluation story from Chapter 2 again.) But Theresa didn’t know what to put in Sally’s
second pocket until she got the information from Tom, a expert. (Remember
that is an abbreviation for .)

Theresa Bonnie Tom

outer

bottom

x

outer
outer

bottom "x

print sentence [:outer is] :outer

planning

then

The Little Person Metaphor 53

What’s important right now is how Tom does his job. Tom is a sort of pickpocket.
He doesn’t steal anything; he just sneaks looks in other people’s pockets. There are lots
of people inside the computer, but the only ones with things in their pockets are the ones
who are actually employed at a given moment. Aside from Tom himself, the only person
who was employed at the time was Theresa, so Tom could only look in her pockets for
a name tag saying . (Theresa is to hire Sally and then Peter, to finish
carrying out her instruction, but she can’t hire them until she gets the information she
needs from Tom.)

Later Theresa will hire Bonnie, a specialist, to help with the instruction

Theresa will give Bonnie the word to put in her pocket. Bonnie also has an instruction

As part of the process of carrying out this instruction, Bonnie will hire Tom to look for
something named . In that case Tom first looks in the pockets of Bonnie, the
person who hired him. Not finding a pocket named , Tom can check the
pockets of Theresa, the person who hired Bonnie. (If you’re studying Logo in a class
with other people, it can be both fun and instructive to act this out with actual people
and pockets.)

An appropriate aspect of this metaphor is that it’s slightly rude to look in someone
else’s pockets, and you shouldn’t do it unnecessarily. This corresponds to a widely

☞

54 Chapter 3 Variables

conj

superconj

superconj

sc1

superconj "jouer [ais ais ait ions iez aient]

superconj "finir [is is it issons issez issent]

? ; imperfect tense
je jouais
tu jouais
il jouait
nous jouions
vous jouiez
elles jouaient
? ; 2nd conj present
je finis
tu finis
il finit
nous finissons
vous finissez
elles finissent

to superconj :verb :endings
sc1 "je 1
sc1 "tu 2
sc1 "il 3
sc1 "nous 4
sc1 "vous 5
sc1 "elles 6
end

accepted rule of Logo style: most of the time, you should write procedures so that they
don’t have to look at variables belonging to their superprocedures. Whatever information
a procedure needs should be given to it explicitly, as an input. You’ll find situations in
which that rule seems very helpful, and other situations in which taking advantage of
dynamic scope seems to make the program easier to understand.

The procedure you wrote earlier deals only with the present tense of the verb.
In French, many other tenses can be formed by a similar process of replacing the endings,
but with different endings for different tenses. Also, second conjugation (-ir) and third
conjugation (-re) verbs have different endings even in the present tense. You don’t want
to write dozens of almost-identical procedures for each of these cases. Instead, write a
single procedure that takes two inputs, a verb and a list of six endings, and
performs the conjugation:

You can save some typing and take advantage of dynamic scope if you use a helper
procedure. My looks like this:

Write the helper procedure to finish this.

Changing the Value of a Variable

name
value

Changing the Value of a Variable 55

make "inner "y

make "new thing "old

make "new :old

make first [new old] thing last [new old]

make
Make

thing Make
make

inner y
inner bottom

thing

old new
old new

new old

new old
make

new make old
thing

make
old new

It is possible for a procedure to change the thing in a variable by using the
command. takes two inputs. The first input must be a word that is the name of a
variable, just like the input to . ’s second input can be any datum. The effect
of is to make the variable named by its first input contain as its value the datum
that is its second input, instead of whatever used to be its value. For example,

would make the variable named have the word as its value. (If there are two
variables named , as is the case while is running, it is the one in the
lower-level procedure that is changed. This is the same as the rule for that we
have already discussed.)

Suppose a procedure has variables named and and you want to copy the
thing in into . You could say

or use the abbreviation

People who don’t understand evaluation sometimes get very upset about the fact that a
quotation mark is used to refer to and a colon is used to refer to . They think
this is just mumbo-jumbo because they don’t understand that a quotation mark is part of
what the colon abbreviates! In both cases we are referring to the name of a variable. A
variable name is a Logo word. To refer to a word in an instruction and have it evaluate
to itself, not invoke a procedure named or , the word must be quoted. The
difference is that the first input to is the of the variable we want to change
(), while the second input to is, in this example, the of a variable (),
which we get by invoking . Since you understand all this, you won’t get upset. You
also won’t resort to magic formulas like “always use quote for the first variable and dots
for the second” because you understand that the inputs to can be computed with
any expression you want! For example, we could copy ’s value into this way:

Global and Local Variables

make

make

Thing

local

local local
converse halves

extremely

modular

not
global

at all

56 Chapter 3 Variables

This instruction contains neither a quotation mark nor a colon, but the inputs to
are exactly the same as they were in the earlier version.

Earlier I mentioned that it is considered slightly rude for a procedure to read its
superprocedures’ variables. It is rude for a procedure to change the values
of other procedures’ variables! Perhaps you can see why that’s so. If you’re trying to
read the definition of a procedure, and part way through that procedure it invokes a
subprocedure, there is no clue to the fact that the subprocedure changes a variable. If
you break this rule, it makes your program very hard to read because you have to read
all the procedures at once. If each procedure deals only with its own variables, you have
written a program, in which each piece can be understood separately.

What if the first input to isn’t the name of an input to an active procedure? In other
words, what if you try to assign a value to a variable that doesn’t exist? What happens is
that a new variable is created that is local to any procedure. The name for this kind of
variable is a variable. looks at global variables if it can’t find a local variable
with the name you want.

A local variable disappears when the procedure it belongs to finishes. Global variables
don’t belong to any procedure, so they stay around forever. This can be convenient, when
you have a permanent body of information that several procedures must use. But it can
also lead to problems if you are careless about what’s in which variable. Local variables
come and go with the procedures they belong to, so it’s easy to avoid clutter when you
use them. Global variables are more like old socks under the bed.

If you are a BASIC programmer, you’ve become accustomed to a language in which
all variables are global. I’ve learned over the years that it’s impossible, at this point
in your career, for you to appreciate the profound effect that’s had on your style of
programming. Only after you’ve used procedural languages like Logo for quite a while
will you understand. Meanwhile there is only one hope for you: you are not allowed to
use global variables for the next few months. Please take my word for it.

Sometimes it’s convenient for a procedure to use a variable that is not an input, but
which could just as well be local. To do this, you can use the command. This
command takes one input, a word. It creates a variable, local to the procedure that
invoked , with that word as its name. For example, we can use to rewrite
the earlier example without needing the subprocedure:

Indirect Assignment

increment

Indirect Assignment 57

local
make local

local
name

local

make

make

increment

increment

to new.converse
local "name
print [Please type your full name.]
make "name readlist
print sentence [Your first name is] first :name
print sentence [Your last name is] last :name
end

make first [new old] thing last [new old]

to increment :variable
make :variable (thing :variable)+1
end

The instruction that invokes can be anywhere in the procedure before the variable
is given a value with . It’s traditional, though, to put instructions at the
beginning of a procedure.

The same procedure would work even without the , but then it would create
a global variable named . It’s much neater if you can avoid leaving unnecessary
global variables around, so you should use unless there is a reason why you really
need a global variable.

Earlier I showed you the example

in which the first input to was the result of evaluating a complex expression rather
than an explicit quoted word in the instruction. But the example was kind of silly, used
only to make the point that such a thing is possible.

Here are a couple of examples in which the use of a computed first input to
really makes sense. These are tricky examples; it may take a couple of readings before
you see what I’m doing here. The technique I’m using is an advanced part of Logo
programming. First is the procedure :

To a variable means to add something to it, usually (as in this procedure) to add
one to it. The input to is the name of a variable. The procedure adds 1 to
that variable:

another

58 Chapter 3 Variables

make "count 12
print :count

increment "count
print :count

?
?
12
?
?
13

make "count :count+1

thing :variable

thing thing "variable

make

increment make "variable
:variable variable

variable
variable

variable count
:count

increment make

variable

You may wonder what the point is. Why couldn’t I just say

instead of the obscure instruction I used? The answer is that if we have several
variables in the program, each of which sometimes gets incremented, this technique
allows a single procedure to be able to increment any variable. It’s a kind of shorthand
for something we might want to do repeatedly.

In the definition of , the first input to is not but
rather . Therefore, the word itself is not the name of the variable
that is incremented. (To say that more simply, the variable named isn’t
incremented.) Instead the variable named contains as its value the name of

variable. (In the example the value of is the word .) It is that
second variable whose value is changed. (In the example was 12 and becomes
13.)

While reading , remember that in the second input to ,

is really an abbreviation for

In other words this expression asks for the value of the variable whose name is itself the
value of .

As a second example suppose you’re writing a program to play a game of Tic-Tac-Toe.
The computer will play one side and a person can play the other side. The person gets to
choose X or O (that is, going first or second). The choice might be made with procedures
like these:

Functional Programming

indirect assignment,

Another

Functional Programming 59

Xsquares Osquares

person.move
make

:person X
Xsquares :person

O Osquares

make

make

make
make

to computer.first
make "computer "X
make "person "O
end

to person.first
make "person "X
make "computer "O
end

to person.move :square
make word :person "squares sentence :square thing word :person "squares
end

word :person "squares

Elsewhere in the program there will be a procedure that asks the person where he or
she wants to move. Suppose the squares on the board are numbered 1 through 9, and
suppose we have two variables, and , which contain lists of numbers
corresponding to the squares marked X and O. Look at this procedure:

The input to is the number of the square into which the person has asked
to move. The first input to is the expression

If the person has chosen to move first, then is the word , and the value of this
expression is the word . If the person has chosen to move last, then
is the word , and the value of the expression is the word . Either way, the
expression evaluates to the name of the appropriate variable, into which the newly chosen
square is appended.

These are examples of which means assigning a value to a variable
whose name is computed by the program. This is an unusual, advanced technique.
Most of the time you’ll use an explicit quoted word as the first input to . But the
technique is a powerful one; many programming languages don’t have this capability at
all. In Logo it isn’t something that had to be invented specially; it is a free consequence
of the fact that the inputs to any procedure (including) are evaluated before the
procedure is invoked.

But don’t get carried away with the flexibility of . advanced Logo technique
avoids the whole idea of changing the value of a variable. Any procedure that uses

converse

make

parallel

functional

60 Chapter 3 Variables

can be rewritten to use an input to a subprocedure instead; compare the two versions of
the program in this chapter.

Why would you want to avoid ? One reason is that if the value of a variable
changes partway through a procedure, then the sequence of steps within the procedure
is very important. One hot area in computer science research is computation:
What if, instead of a computer that can only do one thing at a time, we build a computer
that can do many things at once? It’s hard to take advantage of that ability if each step of
our program depends on the results of previous steps, and if later steps depend on the
result of this one.

A procedure is if it always gives the same output when invoked with the
same input(s). We need a few more Logo tools before we can write interesting functional
programs, but we’ll come back to this idea soon.

