Part VII
Conclusion: Computer Science

This is the end of the technical material in this book. We’ve explored the big ideas
of composition of functions, functions as data, recursion, abstraction, and sequential
programming. As a review, you might enjoy rereading Chapter 1 to see how the formerly
mysterious examples now make sense.

This book is intended both as a standalone programming course for people whose
main interest is in something else and as preparation for those who intend to continue
studying computer science. The final chapter is directed mainly at the latter group, to
tell them what to expect. We confess, though, to the hope that some of the former may
have enjoyed this experience enough to be lured into further study. If you’re in that
category, you'll be particularly interested in a preview of coming attractions.

498









26 What’s Next?

We’ve concluded this introduction to computer science with two examples of “real world”

P P
programming—spreadsheets and databases. What may have seemed like a pointless
game near the beginning of the book allowed us to write these serious programs.

But we’ve only begun to explore the ideas that make up computer science. If you're
interested in learning more, where do you go from here?

The Best Computer Science Book

The next step is to read Structure and Interpretation of Computer Programs by Harold Abelson
and Gerald Jay Sussman with Julie Sussman (MIT Press/McGraw-Hill, Second Edition,
1996). Our book was inspired by theirs, and our main goal in writing this book has been
to prepare you for that one. If you're a student and your school offers a course based on
SICP, take it! If not, read the book on your own.

The big organizing idea of SICP is abstraction. We’ve used this idea in several
ways. We’ve talked about data abstraction such as inventing the sentence and tree data
types. We’ve also invented more specialized data types, such as positions in the tic-tac-
toe program and cells in the spreadsheet program. We’ve discussed how higher-order
procedures abstract a pattern of computation by using an extra argument to represent
the function that’s abstracted out.

What we’ve done in this book covers most of the main ideas in about the first
hundred pages of SICP. But don’t skip over those pages. In the footnotes alone you’ll find
ideas about numerical analysis, cryptography, epistemology (the study of what it means
to know something), number theory, programming language design, and the analysis of
algorithms.

501



Because there is some overlap between what we teach and what they teach, you may
think at first that you can breeze through a course based on SICP. Don’t fall into that trap;
even from the beginning there will be some ideas that are new to you, and after about
four weeks it will all be new to you.

The core ideas of this book are in the first chapter of SICP: functions, recursion, the
substitution model, and higher-order functions. The second chapter is about lists and
data abstraction, extending the ladder of data abstractions in both directions. (That is,
in our book, lists are the fundamental data type used to construct the sentence and tree
abstract data types. In SICP you first learn that lists themselves are built of an even more
fundamental type, the pairs that we mentioned in a pitfall in Chapter 17. Then you learn
about several more abstract data types that can be built out of lists.) The idea of data
abstraction extends beyond inventing new types. For example, SICP uses data structures
not only to contain passive information but also to control the algorithms used in a
computation. You got a taste of this in the a-list of functions in the functions program.

The third chapter of SICP is largely about non-functional programming, a topic we
only begin in this book. Specifically, SICP introduces object-oriented programming, a
very popular technique in which the dichotomy between “smart” procedures and passive
data is broken down. Instead of a single program controlling the computation, there
are many objects that contain both algorithms and data; each object acts independently
of the others. (This is a metaphor; there is still one computer implementing all this
activity. The point is that the programmer is able to think in terms of the metaphor,
and the mechanism that simulates the independent objects is hidden behind the object
abstraction.)

You may have forgotten by now that SICP stands for Structure and Interpretation
of Computer Programs. We’ve been talking about the “structure” part: how a program
is organized to reflect the algorithm it implements. The “interpretation” half of the
book explains how a programming language like Scheme really works—how a computer
understands the program and carries out the activities that the program requests. The
centerpiece of the interpretation part of the book is the Scheme interpreter in the fourth
chapter, a program that takes any other Scheme program as its data and does what that
program specifies. (The compute procedure that evaluates arithmetic expression trees
in Chapter 18 and the ss-eval procedure in our spreadsheet program give a hint of
what the SICP Scheme evaluator is like.) The book goes on to implement different
programming languages and illustrate a variety of implementation techniques. Finally,
the fifth chapter introduces the study of machine organization: how computer hardware
carries out a program.

502 Part VI Conclusion: Computer Science



Beyond SICP

Computer science can be broadly divided into three areas: software, hardware, and
theory. (Of course not everyone will agree with our division in detail.) This book is
about software. SICP is also mostly about software, although it introduces some ideas
from the other two areas. More advanced computer science courses will concentrate on
one particular area.

Software includes programming languages, operating systems, and application pro-
grams. You know what a programming language is; there are courses on language
design questions (why one language is different from another) and implementation (for
example, how to write a Scheme interpreter).* An operating system is a program that
maintains disk file structures and allows different programs to run on a computer without
interfering with each other. Application programming techniques studied in computer
science courses include database management, graphics programming, user interfaces,
and artificial intelligence.

The study of computer hardware ranges from physical principles, through the
workings of electronic components such as transistors, to large-scale circuits such as
memories and adders, to the design of actual computers. This is a range of levels of
abstraction, just as there are levels of abstraction in programming. At the higher levels
of abstraction, you can think of an electronic circuit as a perfect representation of some
function that it implements; that is, the signals coming out the output wires are functions
of the signals coming in at the input wires. At a lower level of abstraction, you have
to think about the limitations of physical devices. (For example, a device may fail if its
output is attached to the inputs of too many other devices. It’s as if you could use the
return value from a function only a certain number of times.)

Theoretical computer science is a kind of applied mathematics. It includes analysis
of algorithms, which is the study of how fast one program runs compared to another.
(We touched on this topic when we mentioned that the simple selection sort is slower
than the more complicated mergesort. Analysis of algorithms provides the tools to show
exactly how much slower.) Theoreticians also study problems that can’t be solved by any
computer program at all; the most famous example is the halling problem of determining

* Many beginners think that studying computer science means learning a lot of different
programming languages. Perhaps you start with BASIC, then you learn Pascal, then C, and so on.
That’s not true. The crucial ideas in computer science can be expressed in any modern language;
it’s unusual for a computer science student to be taught more than two languages throughout
college.

Chapter 26 What’s Next? 503



in finite time whether some other program would run forever. Automata theoryis the study
of simplified pseudo-computers to prove theorems about the capabilities of computers in
general.

A few topics don’t fit readily into one of our three groups, such as numerical analysis,
the study of how computers do arithmetic to ensure that the algorithms used really
give correct results. This field involves aspects of programming, hardware design, and
mathematics. Robotics involves artificial intelligence programming techniques along with
electrical and mechanical engineering.

Standard Scheme

As we’ve mentioned, this book uses a lot of “primitive” procedures that aren’t part of
standard Scheme. These are procedures we wrote in Scheme and included in the file
simply.scm, which is listed in Appendix C.

When you use Scheme in some other context, it probably won’t come with these
procedures included. There are three things you can do about this:

* Learn to love standard Scheme. That means not using the word and sentence functions,
not using our implementation of trees, not using our higher-order procedures (map and
for-each are the only standard ones), and not using read-line, read-string,
show, show-1line, align, or close-all-ports. Also, you may find it necessary
to use data types we haven’t fully explained: characters, strings, and pairs.

* Load our simply.scm and continue to work in the style we’ve used in this book.
The advantage is that (in our humble opinion) we’ve provided some very convenient
facilities. The disadvantage is that other Scheme programmers won’t understand your
programs unless they’ve read our book.

* Develop your own collection of tools to match the kind of programming you’re doing
in the new situations that come up. You can start with some of ours and add new
procedures that you invent.

Actually, all three of these are good ideas. If you are going to continue working with
Scheme, you’ll certainly need to know what’s in the standard and what’s an extension to
the language. After a while you’re bound to develop a collection of tools that fit with
your own preferred programming style. And sometimes butfirst will be just what you
need for some project.

You may be curious about the implementation of our tool procedures. You've already
seen some of them, such as the higher-order procedures whose implementation is
described in Chapter 19. The input/output procedures (show and its friends) are

504 Part VI Conclusion: Computer Science



straightforward once you’ve learned about the character data type. But you’ll find
that the implementation of words is quite complicated. Not only did we have to write
the obvious word, first, and so on, but we also had to rewrite all of the arithmetic
procedures so they work on words like "007" as well as ordinary numbers.

There are two documents that specify exactly what makes up standard Scheme. The
first is updated fairly frequently to reflect ongoing experimentation in the language
design. As we go to press, the most recent edition is called the Revised® Report on the
Algorithmic Language Scheme. The second document is meant to provide a more stable
basis for people who depend on a language that’s guaranteed not to become obsolete; it’s
IEEE Standard 1178-1990, [EEE Standard for the Scheme Programming Language, published
by the Institute of Electrical and Electronic Engineers in 1991. Appendix A tells you how
to find both documents.

Last Words

It’s hard to wrap up something like this without sounding preachy. Perhaps you’ll forgive
us this one section since we’ve been so cool all through the rest of the book.

We thought of two general points that we want to leave you with. First, in our
teaching experience at Berkeley we’ve seen many students learn the ideas of functional
programming in Scheme, then seem to forget all the ideas when they use another
programming language, such as C. Part of the skill of a computer scientist is to see past
surface differences in notation and understand, for example, that if the best way to solve
some problem in Scheme is with a recursive procedure, then it’s probably the best way in
G, too.

The second point is that it’s very easy to get a narrow technical education, learn lots
of great ideas about computer science, and still have a hard time dealing with the rest of
reality. The utilitarian way to put it is that when you work as a computer programmer
it’s rare that you can just sit in your corner and write programs. Instead, you have to
cooperate with other people on a team project; you have to write documentation both
for other programmers and for the people who will eventually use your program; you
have to talk with customers and find out what they really want the program to do, before
you write it. For all these reasons you have to work at developing communication skills
just as much as you work at your programming skills. But the utilitarian argument is just
our sneaky way of convincing you; the truth is that we want you to know about things
that have nothing to do with your technical work. Matt majored in music along with
computer science; Brian has a degree in clinical psychology. After you read Abelson and
Sussman, go on to read Freud and Marx.

Chapter 26 What’s Next? 505



