
Once you see how it works, it’s not so mysterious.

367

Functions

The Main Loop

21 Example: The Program

functions

functions

functions
read

functions

(define (functions-loop)
(let ((fn-name (get-fn)))
(if (equal? fn-name ’exit)

"Thanks for using FUNCTIONS!"
(let ((args (get-args (arg-count fn-name))))
(if (not (in-domain? args fn-name))

(show "Argument(s) not in domain.")
(show-answer (apply (scheme-procedure fn-name) args)))

(functions-loop)))))

In Chapter 2 you used a program called to explore some of Scheme’s
primitive functions. Now we’re going to go back to that program from the other point of
view: instead of using the program to learn about functions, we’re going to look at how
the program works as an example of programming with input and output.

The program is an infinite loop similar to Scheme’s read-eval-print loop. It
reads in a function name and some arguments, prints the result of applying that function
to those arguments, and then does the whole thing over again.

There are some complexities, though. The program keeps asking you
for arguments until it has enough. This means that the portion of the loop has
to read a function name, figure out how many arguments that procedure takes, and
then ask for the right number of arguments. On the other hand, each argument is
an implicitly quoted datum rather than an expression to be evaluated; the
evaluator avoids the recursive complexity of arbitrary subexpressions within expressions.
(That’s why we wrote it: to focus attention on one function invocation at a time, rather
than on the composition of functions.) Here’s the main loop:

368 Part VI Sequential Programming

The Difference between a Procedure and Its Name

Arg-count

In-domain? #t
Scheme-procedure

if show-answer
#f

#F

(define (get-fn) ;; first version
(display "Function: ")
(read))

(define (get-args n)
(if (= n 0)

’()
(let ((first (get-arg)))
(cons first (get-args (- n 1))))))

(define (get-arg) ;; first version
(display "Argument: ")
(read))

(define (show-answer answer)
(newline)
(display "The result is: ")
(if (not answer)

(show "#F")
(show answer))

(newline))

(show-answer (apply fn-name args))

This invokes a lot of helper procedures. takes the name of a procedure
as its argument and returns the number of arguments that the given procedure takes.

takes a list and the name of a procedure as arguments; it returns if the
elements of the list are valid arguments to the given procedure.
takes a name as its argument and returns the Scheme procedure with the given name.
We’ll get back to these helpers later.

The other helper procedures are the ones that do the input and output. The actual
versions are more complicated because of error checking; we’ll show them to you later.

(That weird expression in is needed because in some old versions of
Scheme the empty list means the same as . We wanted to avoid raising this issue in
Chapter 2, so we just made sure that false values always printed as .)

You may be wondering why we didn’t just say

•

•

•

The Association List of Functions

word

Chapter 21 Example: The Program 369

(define x (read))

(+ 2 3)

functions
+

functions

functions

functions-loop
fn-name get-fn read

x (+ 2 3)

butfirst

butfirst

butfirst

Functions

* Some Scheme procedures can accept any number of arguments, but for the purposes of the
program we restrict these procedures to their most usual case, such as two arguments

for .

** Scheme would complain all by itself, of course, but would then stop running the
program. We want to catch the error before Scheme does, so that after seeing the error message
you’re still in . As we mentioned in Chapter 19, a program meant for beginners, such
as the readers of Chapter 2, should be especially robust.

in the definition of . Remember that the value of the variable
comes from , which invokes . Suppose you said

and then typed

The value of would be the three element list , not the number five.

Similarly, if you type “butfirst,” then read will return the , not the
procedure of that name. So we need a way to turn the name of a function into the
procedure itself.

We accomplish this by creating a huge association list that contains all of the functions
the program knows about. Given a word, such as , we need to know three
things:

The Scheme procedure with that name (in this case, the procedure).

The number of arguments required by the given procedure (one).*

The types of arguments required by the given procedure (one word or sentence, which
must not be empty).

We need to know the number of arguments the procedure requires because the
program prompts the user individually for each argument; it has to know how many to
ask for. Also, it needs to know the domain of each function so it can complain if the
arguments you give it are not in the domain.**

This means that each entry in the association list is a list of four elements:

* *

Domain Checking

370 Part VI Sequential Programming

(list ’and and 2 (lambda (x y) (and (boolean? x) (boolean? y))))

(lambda (x y) (and x y))

The real list is much longer, of course, but you get the idea.* It’s a convention in Scheme
programming that names of global variables used throughout a program are surrounded
by asterisks to distinguish them from parameters of procedures.

Here are the selector procedures for looking up information in this a-list:

Note that we represent the domain of a procedure by another procedure.** Each

(define *the-functions* ;; partial listing
(list (list ’* * 2 (lambda (x y) (and (number? x) (number? y))))

(list ’+ + 2 (lambda (x y) (and (number? x) (number? y))))
(list ’and (lambda (x y) (and x y)) 2

(lambda (x y) (and (boolean? x) (boolean? y))))
(list ’equal? equal? 2 (lambda (x y) #t))
(list ’even? even? 1 integer?)
(list ’word word 2 (lambda (x y) (and (word? x) (word? y))))))

(define (scheme-procedure fn-name)
(cadr (assoc fn-name *the-functions*)))

(define (arg-count fn-name)
(caddr (assoc fn-name *the-functions*)))

(define (type-predicate fn-name)
(cadddr (assoc fn-name *the-functions*)))

and

and

functions
and if or

butfirst

* Since is a special form, we can’t just say

That’s because special forms can’t be elements of lists. Instead, we have to create a normal
procedure that can be put in a list but computes the same function as :

We can get away with this because in the program we don’t care about argument
evaluation, so it doesn’t matter that is a special form. We do the same thing for and .

** The domain of a procedure is a set, and sets are generally represented in programs as lists.
You might think that we’d have to store, for example, a list of all the legal arguments to .
But that would be impossible, since that list would have to be infinitely large. Instead, we can take
advantage of the fact that the only use we make of this set is membership testing, that is, finding
out whether a particular argument is in a function’s domain.

type predicate,

Chapter 21 Example: The Program 371

+

#t #f
+

in-domain?

+ - =

member? appearances

Functions

domain-checking procedure, or takes the same arguments as the procedure
whose domain it checks. For example, the type predicate for is

The type predicate returns if its arguments are valid and otherwise. So in the case
of , any two numbers are valid inputs, but any other types of arguments aren’t.

Here’s the predicate:

Of course, certain type predicates are applicable to more than one procedure. It
would be silly to type

for , , , and so on. Instead, we give this function a name:

We then refer to the type predicate by name in the a-list:

Some of the type predicates are more complicated. For example, here’s the one for
the and functions:

(lambda (x y) (and (number? x) (number? y)))

(define (in-domain? args fn-name)
(apply (type-predicate fn-name) args))

(lambda (x y) (and (number? x) (number? y)))

(define (two-numbers? x y)
(and (number? x) (number? y)))

(define *the-functions* ;; partial listing, revised
(list (list ’* * 2 two-numbers?)

(list ’+ + 2 two-numbers?)
(list ’and (lambda (x y) (and x y)) 2

(lambda (x y) (and (boolean? x) (boolean? y))))
(list ’equal? equal? 2 (lambda (x y) #t))
(list ’even? even? 1 integer?)
(list ’word word 2 (lambda (x y) (and (word? x) (word? y))))))

(define (member-types-ok? small big)
(and (word? small)

(or (sentence? big) (and (word? big) (= (count small) 1)))))

372 Part VI Sequential Programming

Item

word-or-sent? count

Equal?

functions

#t functions
6

(lambda (n stuff)
(and (integer? n) (> n 0)

(word-or-sent? stuff) (<= n (count stuff))))

(define (word-or-sent? x)
(or (word? x) (sentence? x)))

(lambda (x y) #t)

(and 6 #t)

#f functions

functions

also has a complicated domain:

This invokes , which is itself the type predicate for the procedure:

On the other hand, some are less complicated. will accept any two
arguments, so its type predicate is just

The complete listing at the end of the chapter shows the details of all these
procedures. Note that the program has a more restricted idea of domain
than Scheme does. For example, in Scheme

returns and does not generate an error. But in the program the argument
is considered out of the domain.*

If you don’t like math, just ignore the domain predicates for the mathematical
primitives; they involve facts about the domains of math functions that we don’t expect
you to know.**

* Why did we choose to restrict the domain? We were trying to make the point that invoking a
procedure makes sense only with appropriate arguments; that point is obscured by the complicating
fact that Scheme interprets any non- value as true. In the program, where
composition of functions is not allowed, there’s no benefit to Scheme’s more permissive rule.

** A reason that we restricted the domains of some mathematical functions is to protect ourselves
from the fact that some version of Scheme support complex numbers while others do not. We
wanted to write one version of that would work in either case; sometimes the easiest
way to avoid possible problems was to restrict some function’s domain.

Intentionally Confusing a Function with Its Name

word

everything

name

Chapter 21 Example: The Program 373

butfirst
functions

butlast count

butlast
every

functions
every keep functions

Functions

Function: count
Argument: butlast

The result is: 7

Function: every
Argument: butlast
Argument: (helter skelter)

The result is: (HELTE SKELTE)

(count ’butlast)

(every butlast ’(helter skelter))

(define (named-every fn-name list)
(every (scheme-procedure fn-name) list))

(define (named-keep fn-name list)
(keep (scheme-procedure fn-name) list))

> (every first ’(another girl))
(A G)
> (named-every ’first ’(another girl))
(A G)
> (every ’first ’(another girl))
ERROR: ATTEMPT TO APPLY NON-PROCEDURE FIRST

Earlier we made a big deal about the difference between a procedure and its name, to
make sure you wouldn’t think you can apply the to arguments. But the

program completely hides this distinction from the user:

When we give as an argument to , it’s as if we’d said

In other words, it’s taken as a word. But when we give as an argument to
, it’s as if we’d said

How can we treat some arguments as quoted and others not? The way this works
is that is considered a word or a sentence by the program. The
higher-order functions and are actually represented in the
implementation by Scheme procedures that take the of a function as an argument,
instead of a procedure itself as the ordinary versions do:

More on Higher-Order Functions

does

every

374 Part VI Sequential Programming

Function: first
Non-Automatically-Quoted-Argument: ’datum

The result is: D

Function: first
Non-Automatically-Quoted-Argument: datum

ERROR: THE VARIABLE DATUM IS UNBOUND.

Function: every
Argument: first

named-every
first

functions functions

functions

functions
every

functions first
named-every every functions

functions
number-of-arguments

number-of-arguments

number-of-arguments
functions functions

This illustration hides a subtle point. When we invoked at a Scheme
prompt, we had to quote the word that we used as its argument. But when you
run the program, you don’t quote anything. The point is that
provides an evaluator that uses a different notation from Scheme’s notation. It may be
clearer if we show an interaction with an imaginary version of that use
Scheme notation:

We didn’t want to raise the issue of quoting at that early point in the book, so we wrote
so that argument is automatically quoted. Well, if that’s the case, it’s

true even when we’re invoking . If you say

. . .

then by the rules of the program, that argument is the quoted word .
So , the procedure that pretends to be in the world,
has to “un-quote” that argument by looking up the corresponding procedure.

One of the higher-order functions that you can use in the program is called
. It takes a procedure (actually the name of a procedure, as

we’ve just been saying) as argument and returns the number of arguments that that
procedure accepts. This example is unusual because there’s no such function in Scheme.
(It would be complicated to define, for one thing, because some Scheme procedures can
accept a variable number of arguments. What should return
for such a procedure?)

The implementation of makes use of the same a-list of
functions that the evaluator itself uses. Since the program

Chapter 21 Example: The Program 375

every keep

every keep
every

keep

fn
stuff

Functions

(list ’number-of-arguments arg-count 1 valid-fn-name?)

(define (valid-fn-name? name)
(assoc name *the-functions*))

(every square ’(think for yourself))

> (every square ’(3 4 5))
(9 16 25)

> (every first ’(think for yourself))
(T F Y)

(lambda (fn stuff)
(hof-types-ok? fn stuff word-or-sent?))

(lambda (fn stuff)
(hof-types-ok? fn stuff boolean?))

needs to know the number of arguments for every procedure anyway, it’s hardly any extra
effort to make that information available to the user. We just add an entry to the a-list:

The type predicate merely has to check that the argument is found in the a-list of
functions:

The type checking for the arguments to and is unusually complicated
because what’s allowed as the second argument (the collection of data) depends on
which function is used as the first argument. For example, it’s illegal to compute

even though either of those two arguments would be allowable if we changed the other
one:

The type-checking procedures for and use a common subprocedure.
The one for is

and the one for is

The third argument specifies what types of results must return when applied to the
elements of .

•

•

•

More Robustness

each element

376 Part VI Sequential Programming

every word
keep

stuff
every keep

read

read

read

functions

(define (hof-types-ok? fn-name stuff range-predicate)
(and (valid-fn-name? fn-name)

(= 1 (arg-count fn-name))
(word-or-sent? stuff)
(empty? (keep (lambda (element)

(not ((type-predicate fn-name) element)))
stuff))

(null? (filter (lambda (element)
(not (range-predicate element)))

(map (scheme-procedure fn-name)
(every (lambda (x) x) stuff))))))

and map every
fn every

map stuff every
stuff

map

* That last argument to is complicated. The reason we use instead of is that the
results of the invocations of might not be words or sentences, so wouldn’t accept them.
But has its own limitation: It won’t accept a word as the argument. So we use
to turn into a sentence—which, as you know, is really a list—and that’s guaranteed to be
acceptable to . (This is an example of a situation in which respecting a data abstraction would
be too horrible to contemplate.)

This says that the function being used as the first argument must be a one-argument
function (so you can’t say, for example, of and something); also,
of the second argument must be an acceptable argument to that function. (If you
the unacceptable arguments, you get nothing.) Finally, each invocation of the given
function on an element of must return an object of the appropriate type: words
or sentences for , true or false for .*

The program we’ve shown you so far works fine, as long as the user never makes a mistake.
Because this program was written for absolute novices, we wanted to bend over backward
to catch any kind of strange input they might give us.

Using to accept user input has a number of disadvantages:

If the user enters an empty line, continues waiting silently for input.

If the user types an unmatched open parenthesis, continues reading forever.

If the user types two expressions on a line, the second one will be taken as a response
to the question the program hasn’t asked yet.

Chapter 21 Example: The Program 377

read-line

Read-line

read-line

Get-arg

read-line #
#t #f "#t"

"#f" Get-arg booleanize

Get-arg any-parens? remove-first-paren remove-last-paren
booleanize

Get-fn get-arg

Functions

(define (get-arg)
(display "Argument: ")
(let ((line (read-line)))
(cond ((empty? line)

(show "Please type an argument!")
(get-arg))
((and (equal? "(" (first (first line)))

(equal? ")" (last (last line))))
(let ((sent (remove-first-paren (remove-last-paren line))))

(if (any-parens? sent)
(begin (show "Sentences can’t have parentheses inside.")

(get-arg))
(map booleanize sent))))

((any-parens? line)
(show "Bad parentheses")
(get-arg))
((empty? (bf line)) (booleanize (first line)))
(else (show "You typed more than one argument! Try again.")

(get-arg)))))

We solve all these problems by using to read exactly one line, even if it’s
empty or ill-formed, and then checking explicitly for possible errors.

treats parentheses no differently from any other character. That’s an
advantage if the user enters mismatched or inappropriately nested parentheses. However,
if the user correctly enters a sentence as an argument to some function, will
include the initial open parenthesis as the first character of the first word, and the final
close parenthesis as the last character of the last word. must correct for these
extra characters.

Similarly, treats number signs () like any other character, so it doesn’t
recognize and as special values. Instead it reads them as the strings and

. calls to convert those strings into Boolean values.

invokes , , , and
, whose meanings should be obvious from their names. You can look up

their definitions in the complete listing at the end of this chapter.

is simpler than , because there’s no issue about parentheses, but
it’s still much more complicated than the original version, because of error checking.

Complete Program Listing

378 Part VI Sequential Programming

get-fn valid-fn-name?

read-line
read

read-line read-line read
functions read read

(functions) get-fn
functions

read-line

This version of uses (which you’ve already seen) to ensure
that what the user types is the name of a function we know about.

There’s a problem with using . As we mentioned in a pitfall in
Chapter 20, reading some input with and then reading the next input with

results in returning an empty line left over by . Although
the program doesn’t use , Scheme itself used to read the

expression that started the program. Therefore, ’s first attempt
to read a function name will see an empty line. To fix this problem, the
procedure has an extra invocation of :

(define (get-fn)
(display "Function: ")
(let ((line (read-line)))
(cond ((empty? line)

(show "Please type a function!")
(get-fn))
((not (= (count line) 1))
(show "You typed more than one thing! Try again.")
(get-fn))
((not (valid-fn-name? (first line)))
(show "Sorry, that’s not a function.")
(get-fn))
(else (first line)))))

(define (functions)
(read-line)
(show "Welcome to the FUNCTIONS program.")
(functions-loop))

;;; The functions program

(define (functions)
;; (read-line)
(show "Welcome to the FUNCTIONS program.")
(functions-loop))

FunctionsChapter 21 Example: The Program 379

(define (functions-loop)
(let ((fn-name (get-fn)))
(if (equal? fn-name ’exit)

"Thanks for using FUNCTIONS!"
(let ((args (get-args (arg-count fn-name))))
(if (not (in-domain? args fn-name))

(show "Argument(s) not in domain.")
(show-answer (apply (scheme-function fn-name) args)))

(functions-loop)))))

(define (get-fn)
(display "Function: ")
(let ((line (read-line)))
(cond ((empty? line)

(show "Please type a function!")
(get-fn))
((not (= (count line) 1))
(show "You typed more than one thing! Try again.")
(get-fn))
((not (valid-fn-name? (first line)))
(show "Sorry, that’s not a function.")
(get-fn))
(else (first line)))))

(define (get-arg)
(display "Argument: ")
(let ((line (read-line)))
(cond ((empty? line)

(show "Please type an argument!")
(get-arg))
((and (equal? "(" (first (first line)))

(equal? ")" (last (last line))))
(let ((sent (remove-first-paren (remove-last-paren line))))

(if (any-parens? sent)
(begin
(show "Sentences can’t have parentheses inside.")
(get-arg))
(map booleanize sent))))

((any-parens? line)
(show "Bad parentheses")
(get-arg))
((empty? (bf line)) (booleanize (first line)))
(else (show "You typed more than one argument! Try again.")

(get-arg)))))

380 Part VI Sequential Programming

(define (get-args n)
(if (= n 0)

’()
(let ((first (get-arg)))
(cons first (get-args (- n 1))))))

(define (any-parens? line)
(let ((letters (accumulate word line)))
(or (member? "(" letters)

(member? ")" letters))))

(define (remove-first-paren line)
(if (equal? (first line) "(")

(bf line)
(se (bf (first line)) (bf line))))

(define (remove-last-paren line)
(if (equal? (last line) ")")

(bl line)
(se (bl line) (bl (last line)))))

(define (booleanize x)
(cond ((equal? x "#t") #t)

((equal? x "#f") #f)
(else x)))

(define (show-answer answer)
(newline)
(display "The result is: ")
(if (not answer)

(show "#F")
(show answer))

(newline))

(define (scheme-function fn-name)
(cadr (assoc fn-name *the-functions*)))

(define (arg-count fn-name)
(caddr (assoc fn-name *the-functions*)))

(define (type-predicate fn-name)
(cadddr (assoc fn-name *the-functions*)))

(define (in-domain? args fn-name)
(apply (type-predicate fn-name) args))

FunctionsChapter 21 Example: The Program 381

;; Type predicates

(define (word-or-sent? x)
(or (word? x) (sentence? x)))

(define (not-empty? x)
(and (word-or-sent? x) (not (empty? x))))

(define (two-numbers? x y)
(and (number? x) (number? y)))

(define (two-reals? x y)
(and (real? x) (real? y)))

(define (two-integers? x y)
(and (integer? x) (integer? y)))

(define (can-divide? x y)
(and (number? x) (number? y) (not (= y 0))))

(define (dividable-integers? x y)
(and (two-integers? x y) (not (= y 0))))

(define (trig-range? x)
(and (number? x) (<= (abs x) 1)))

(define (hof-types-ok? fn-name stuff range-predicate)
(and (valid-fn-name? fn-name)

(= 1 (arg-count fn-name))
(word-or-sent? stuff)
(empty? (keep (lambda (element)

(not ((type-predicate fn-name) element)))
stuff))

(null? (filter (lambda (element)
(not (range-predicate element)))

(map (scheme-function fn-name)
(every (lambda (x) x) stuff))))))

(define (member-types-ok? small big)
(and (word? small)

(or (sentence? big) (and (word? big) (= (count small) 1)))))

382 Part VI Sequential Programming

;; Names of functions as functions

(define (named-every fn-name list)
(every (scheme-function fn-name) list))

(define (named-keep fn-name list)
(keep (scheme-function fn-name) list))

(define (valid-fn-name? name)
(assoc name *the-functions*))

;; The list itself

(define *the-functions*
(list (list ’* * 2 two-numbers?)

(list ’+ + 2 two-numbers?)
(list ’- - 2 two-numbers?)
(list ’/ / 2 can-divide?)
(list ’< < 2 two-reals?)
(list ’<= <= 2 two-reals?)
(list ’= = 2 two-numbers?)
(list ’> > 2 two-reals?)
(list ’>= >= 2 two-reals?)
(list ’abs abs 1 real?)
(list ’acos acos 1 trig-range?)
(list ’and (lambda (x y) (and x y)) 2

(lambda (x y) (and (boolean? x) (boolean? y))))
(list ’appearances appearances 2 member-types-ok?)
(list ’asin asin 1 trig-range?)
(list ’atan atan 1 number?)
(list ’bf bf 1 not-empty?)
(list ’bl bl 1 not-empty?)
(list ’butfirst butfirst 1 not-empty?)
(list ’butlast butlast 1 not-empty?)
(list ’ceiling ceiling 1 real?)
(list ’cos cos 1 number?)
(list ’count count 1 word-or-sent?)
(list ’equal? equal? 2 (lambda (x y) #t))
(list ’even? even? 1 integer?)
(list ’every named-every 2

(lambda (fn stuff)
(hof-types-ok? fn stuff word-or-sent?)))

(list ’exit ’() 0 ’())
; in case user applies number-of-arguments to exit

(list ’exp exp 1 number?)

FunctionsChapter 21 Example: The Program 383

(list ’expt expt 2
(lambda (x y)
(and (number? x) (number? y)

(or (not (real? x)) (>= x 0) (integer? y)))))
(list ’first first 1 not-empty?)
(list ’floor floor 1 real?)
(list ’gcd gcd 2 two-integers?)
(list ’if (lambda (pred yes no) (if pred yes no)) 3

(lambda (pred yes no) (boolean? pred)))
(list ’item item 2

(lambda (n stuff)
(and (integer? n) (> n 0)

(word-or-sent? stuff) (<= n (count stuff)))))
(list ’keep named-keep 2

(lambda (fn stuff)
(hof-types-ok? fn stuff boolean?)))

(list ’last last 1 not-empty?)
(list ’lcm lcm 2 two-integers?)
(list ’log log 1 (lambda (x) (and (number? x) (not (= x 0)))))
(list ’max max 2 two-reals?)
(list ’member? member? 2 member-types-ok?)
(list ’min min 2 two-reals?)
(list ’modulo modulo 2 dividable-integers?)
(list ’not not 1 boolean?)
(list ’number-of-arguments arg-count 1 valid-fn-name?)
(list ’odd? odd? 1 integer?)
(list ’or (lambda (x y) (or x y)) 2

(lambda (x y) (and (boolean? x) (boolean? y))))
(list ’quotient quotient 2 dividable-integers?)
(list ’random random 1 (lambda (x) (and (integer? x) (> x 0))))
(list ’remainder remainder 2 dividable-integers?)
(list ’round round 1 real?)
(list ’se se 2

(lambda (x y) (and (word-or-sent? x) (word-or-sent? y))))
(list ’sentence sentence 2

(lambda (x y) (and (word-or-sent? x) (word-or-sent? y))))
(list ’sentence? sentence? 1 (lambda (x) #t))
(list ’sin sin 1 number?)
(list ’sqrt sqrt 1 (lambda (x) (and (real? x) (>= x 0))))
(list ’tan tan 1 number?)
(list ’truncate truncate 1 real?)
(list ’vowel? (lambda (x) (member? x ’(a e i o u))) 1

(lambda (x) #t))
(list ’word word 2 (lambda (x y) (and (word? x) (word? y))))
(list ’word? word? 1 (lambda (x) #t))))

Exercises

21.1

21.2

21.3

21.4

384 Part VI Sequential Programming

(define (get-args n)
(if (= n 0)

’()
(cons (get-arg) (get-args (- n 1)))))

(lambda (x y) #t)

(list ’equal? equal? 2 #t)

get-args let first
let

equal?

#t #t
equal?

assoc *the-functions*
get-fn

fn-name fn-entry functions-loop
scheme-procedure arg-count

assoc

the-functions
functions

The procedure has a that creates the variable , and then
that variable is used only once inside the body of the . Why doesn’t it just say the
following?

The domain-checking function for is

This seems silly; it’s a function of two arguments that ignores both arguments and always
returns . Since we know ahead of time that the answer is , why won’t it work to have

’s entry in the a-list be

Every time we want to know something about a function that the user typed in,
such as its number of arguments or its domain-checking predicate, we have to do an

in . That’s inefficient. Instead, rewrite the program so that
returns a function’s entry from the a-list, instead of just its name. Then rename

the variable to in the procedure, and rewrite
the selectors , , and so on, so that they don’t invoke

.

Currently, the program always gives the message “argument(s) not in domain”
when you try to apply a function to bad arguments. Modify the program so that each
record in also contains a specific out-of-domain message like “both
arguments must be numbers,” then modify to look up and print this error
message along with “argument(s) not in domain.”

21.5

21.6

21.7

21.8

21.9

Chapter 21 Example: The Program 385

First

assoc #f
arg-count caddr assoc (caddr #f)

word?

get-fn

Functions

Function: if
First Argument: #t
Second Argument: paperback
Third Argument: writer

The result is: PAPERBACK

Function: sqrt
Argument: 36

The result is 6

(lambda (x) #t)

(lambda (x) (word? x))

(functions)

Modify the program so that it prompts for the arguments this way:

but if there’s only one argument, the program shouldn’t say :

The procedure might return instead of an a-list record. How come it’s
okay for to take the of ’s return value if is an
error?

Why is the domain-checking predicate for the function

instead of the following procedure?

What is the value of the following Scheme expression?

We said in the recursion chapters that every recursive procedure has to have a base
case and a recursive case, and that the recursive case has to somehow reduce the size
of the problem, getting closer to the base case. How does the recursive call in
reduce the size of the problem?

