

Generalizing Patterns

19 Implementing Higher-Order Functions

higher-order procedures—

generalize the pattern

327

every keep

every keep

square-sent pigl-sent
every every

(define pi 3.141592654)

(define (square-area r) (* r r))

(define (circle-area r) (* pi r r))

(define (sphere-area r) (* 4 pi r r))

This chapter is about writing that is, procedures that implement
higher-order functions. We are going to study the implementation of , , and
so on.

Really there are no new techniques involved. You know how to write recursive
procedures that follow the pattern, the pattern, and so on; it’s a small
additional step to generalize those patterns. The truly important point made in this
chapter is that you aren’t limited to a fixed set of higher-order functions. If you feel a
need for a new one, you can implement it.

In Chapter 14, we showed you the procedures and , which
follow the pattern of recursion. In order to write the general tool, itself,
we have to that those two have in common.

Before we get to writing higher-order procedures, let’s look at a simpler case of
generalizing patterns.

Suppose we want to find out the areas of several different kinds of shapes, given one
linear dimension. A straightforward way would be to do it like this:

r
shape

square-area
every

328 Part V Abstraction

(define (hexagon-area r) (* (sqrt 3) 1.5 r r))

> (square-area 6)
36

> (circle-area 5)
78.53981635

(define (area shape r) (* shape r r))
(define square 1)
(define circle pi)
(define sphere (* 4 pi))
(define hexagon (* (sqrt 3) 1.5))

> (area sphere 7)
615.752160184

(define (area-of-square-of-side-5)
(* 5 5))

(define (area-of-square-of-side-6)
(* 6 6))

This works fine, but it’s somewhat tedious to define all four of these procedures, given
that they’re so similar. Each one returns the square of its argument times some constant
factor; the only difference is the constant factor.

We want to generalize the pattern that these four procedures exhibit. Each of these
procedures has a particular constant factor built in to its definition. What we’d like
instead is one single procedure that lets you choose a constant factor when you invoke
it. This new procedure will take a second argument besides the linear dimension (the
radius or side): a argument whose value is the desired constant factor.

What’s the point? We started with several procedures. Then we found that they had
certain points of similarity and certain differences. In order to write a single procedure
that generalizes the points of similarity, we had to use an additional argument for each
point of difference. (In this example, there was only one point of difference.)

In fact, procedure with arguments is a generalization in the same way. Even
, which we presented as the special case to be generalized, is more general

than these procedures:

EveryThe Pattern Revisited

every-something

every-something

every

every

every

every
first butfirst

stuff sent

Chapter 19 Implementing Higher-Order Functions 329

(define (sent)
(if (empty? sent)

’()
(se ((first sent))

((bf sent)))))

(define (every fn sent)
(if (empty? sent)

’()
(se (fn (first sent))

(every fn (bf sent)))))

These may seem too trivial to be taken seriously. Indeed, nobody would write such
procedures. But it’s possible to take the area of a particular size square without using
a procedure at all, and then later discover that you need to deal with squares of several
sizes.

This idea of using a procedure to generalize a pattern is part of the larger idea of
abstraction that we’ve been discussing throughout the book. We notice an algorithm that
we need to use repeatedly, and so we separate the algorithm from any particular data
values and give it a name.

The idea of generalization may seem obvious in the example about areas of squares.
But when we apply the same idea to generalizing over a function, rather than merely
generalizing over a number, we gain the enormous expressive power of higher-order
functions.

Here again is the template:

You’ve been writing -like procedures by filling in the blank with a specific function.
To generalize the pattern, we’ll use the trick of adding an argument, as we discussed in
the last section.

This is hardly any work at all for something that seemed as mysterious as probably
did when you first saw it.

Recall that will also work if you pass it a word as its second argument. The
version shown here does indeed work for words, because and work
for words. So probably “ ” would be a better formal parameter than “ .” (The

Map Every

330 Part V Abstraction

The Difference between and

every sentence

map

every cons
car cdr se first butfirst

map
car map every

map

map every Map
cons every sentence

result from is always a sentence, because is used to construct the
result.)

Here’s the definition of the procedure:

The structure here is identical to that of ; the only difference is that we use ,
, and instead of , , and .

One implication of this is that you can’t use with a word, since it’s an error to
take the of a word. When is it advantageous to use instead of ? Suppose
you’re using with a structured list, like this:

Why does preserve the structure of the sublists while doesn’t? uses
to combine the elements of the result, whereas uses :

(define (map fn lst)
(if (null? lst)

’()
(cons (fn (car lst))

(map fn (cdr lst)))))

> (map (lambda (flavor) (se flavor ’(is great)))
’(ginger (ultra chocolate) pumpkin (rum raisin)))

((GINGER IS GREAT) (ULTRA CHOCOLATE IS GREAT)
(PUMPKIN IS GREAT) (RUM RAISIN IS GREAT))

> (every (lambda (flavor) (se flavor ’(is great)))
’(ginger (ultra chocolate) pumpkin (rum raisin)))

(GINGER IS GREAT ULTRA CHOCOLATE IS GREAT PUMPKIN IS GREAT
RUM RAISIN IS GREAT)

> (cons ’(pumpkin is great)
(cons ’(rum raisin is great)

’()))
((PUMPKIN IS GREAT) (RUM RAISIN IS GREAT))

> (se ’(pumpkin is great)
(se ’(rum raisin is great)

’()))
(PUMPKIN IS GREAT RUM RAISIN IS GREAT)

and

Filter

Accumulate Reduce

two

Chapter 19 Implementing Higher-Order Functions 331

filter

map cons
keep

keep

accumulate

+ word

three-arg-accumulate

(define (filter pred lst)
(cond ((null? lst) ’())

((pred (car lst))
(cons (car lst) (filter pred (cdr lst))))
(else (filter pred (cdr lst)))))

(define (addup nums)
(if (empty? nums)

0
(+ (first nums) (addup (bf nums)))))

(define (scrunch-words sent)
(if (empty? sent)

""
(word (first sent) (scrunch-words (bf sent)))))

> (three-arg-accumulate + 0 ’(6 7 8))
21

> (three-arg-accumulate word "" ’(come together))
COMETOGETHER

Here’s the implementation of :

Like , this uses as the constructor so that it will work properly on structured
lists. We’re leaving the definition of , the version for words and sentences, as an
exercise.

(Aside from the difference between lists and sentences, this is just like the
template on page 224.)

Here are the examples of the pattern that we showed you before:

What are the similarities and differences? There are important differences
between these procedures: the combiners (versus) and the values returned
in the base cases (zero versus the empty word). According to what we said about
generalizing patterns, you might expect that we’d need two extra arguments. You’d
invoke like this:

332 Part V Abstraction

accumulate reduce

reduce accumulate

stuff butfirst stuff

stuff Reduce
null? car cdr

accumulate +
* word sentence append list

accumulate
(lambda (x y) (word x ’- y)) max accumulate

(define (accumulate combiner stuff) ;; first version
(if (empty? (bf stuff))

(first stuff)
(combiner (first stuff)

(accumulate combiner (bf stuff)))))

(define (accumulate combiner stuff)
(cond ((not (empty? stuff)) (real-accumulate combiner stuff))

((member combiner (list + * word se append))
(combiner))
(else (error

"Can’t accumulate empty input with that combiner"))))

(define (real-accumulate combiner stuff)
(if (empty? (bf stuff))

(first stuff)
(combiner (first stuff) (real-accumulate combiner (bf stuff)))))

But we’ve actually defined and so that only two arguments are
required, the procedure and the sentence or list. We thought it would be too much
trouble to have to provide the identity element all the time. How did we manage to avoid
it?

The trick is that in our and the base case is a one-element
argument, rather than an empty argument. When we’re down to one element in the
argument, we just return that element:

This version is a simplification of the one we actually provide. What happens if
is empty? This version blows up, since it tries to take the of

immediately. Our final version has a specific check for empty arguments:

This version works just like the earlier version as long as isn’t empty. (is
the same, except that it uses , , and .)

As we mentioned in Chapter 8, many of Scheme’s primitive procedures return their
identity element when invoked with no arguments. We can take advantage of this; if

is invoked with an empty second argument and one of the procedures ,
, , , or , we invoke the combiner with no arguments to

produce the return value.

On the other hand, if ’s combiner argument is something like
or , then there’s nothing can

return, so we give an error message. (But it’s a more descriptive error message than

Robustness

accumulate

accumulate

different

Chapter 19 Implementing Higher-Order Functions 333

(define (accumulate combiner stuff) ;; non-robust version
(if (not (empty? stuff))

(real-accumulate combiner stuff)
(combiner)))

(accumulate max ’())

the first version; what message do you get when you call that first version with an empty
second argument?)

It’s somewhat of a kludge that we have to include in our procedure a list of the
functions that can be called without arguments. What we’d like to do is invoke the
combiner and find out if that causes an error, but Scheme doesn’t provide a mechanism
for causing errors on purpose and recovering from them. (Some dialects of Lisp do have
that capability.)

Instead of providing a special error message for empty-argument cases that
can’t handle, we could have just let it blow up:

Some questions about programming have clear right and wrong answers—if your
program doesn’t work, it’s wrong! But the decision about whether to include the extra
check for a procedure that’s usable with an empty argument is a matter of judgment.

Here is the reasoning in favor of this simpler version: In either version, the user who
tries to evaluate an expression like

is going to get an error message. In the longer version we’ve spent both our own
programming effort and a little of the computer’s time on every invocation just to give a

error message from the one that Scheme would have given anyway. What’s the
point?

Here is the reasoning in favor of the longer version: In practice, the empty-argument
situation isn’t going to arise because someone uses a quoted empty sentence; instead
the second argument to will be some expression whose value happens to
be empty under certain conditions. The user will then have to debug the program that
caused those conditions. Debugging is hard; we should make it easier for the user, if we
can, by giving an error message that points clearly to the problem.

accumulate

robust.

334 Part V Abstraction

Higher-Order Functions for Structured Lists

(define (even? num) ;; silly example
(cond ((not (number? num)) (error "Not a number."))

((not (integer? num)) (error "Not an integer."))
((< num 0) (error "Argument must be positive."))
(else (= (remainder num 2) 0))))

(define (deep-pigl structure)
(cond ((word? structure) (pigl structure))

((null? structure) ’())
(else (cons (deep-pigl (car structure))

(deep-pigl (cdr structure))))))

A program that behaves politely when given incorrect input is called It’s not
always a matter of better or worse error messages. For example, a program that reads
input from a human user might offer the chance to try again if some input value is
incorrect. A robust program will also be alert for hardware problems, such as running
out of space on a disk, or getting garbled information over a telephone connection to
another machine because of noise on the line.

It’s possible to pay either too little or too much attention to program robustness. If
you’re a professional programmer, your employer will expect your programs to survive
errors that are likely to happen. On the other hand, your programs will be hard to read
and debug if the error checking swamps the real work! As a student, unless you are
specifically asked to “bulletproof” your program, don’t answer exam questions by writing
procedures like this one:

In the case of , we decided to be extra robust because we were writing a
procedure for use in a beginning programming course. If we were writing this tool just
for our own use, we might have chosen the non-robust version. Deciding how robust a
program will be is a matter of taste.

We’ve given you a fairly standard set of higher-order functions, but there’s no law that
says these are the only ones. Any time you notice yourself writing what feels like the
same procedure over again, but with different details, consider inventing a higher-order
function.

For example, here’s a procedure we defined in Chapter 17.

The Zero-Trip Do Loop

deep-square

do
every

every do

do

do
do

Chapter 19 Implementing Higher-Order Functions 335

(define (deep-map f structure)
(cond ((word? structure) (f structure))

((null? structure) ’())
(else (cons (deep-map f (car structure))

(deep-map f (cdr structure))))))

This procedure converts every word in a structured list to Pig Latin. Suppose we have a
structure full of numbers and we want to compute all of their squares. We could write a
specific procedure , but instead, we’ll write a higher-order procedure:

The first programming language that provided a level of abstraction over the instructions
understood directly by computer hardware was Fortran, a language that is still widely
used today despite the advances in programming language design since then. Fortran
remains popular because of the enormous number of useful programs that have already
been written in it; if an improvement is needed, it’s easier to modify the Fortran program
than to start again in some more modern language.

Fortran includes a control mechanism called , a sort of higher-order procedure
that carries out a computation repeatedly, as does. But instead of carrying out
the computation once for each element of a given collection of data (like the sentence
argument to), performs a computation once for each integer in a range
specified by its endpoints. “For every number between 4 and 16, do such-and-such.”

What if you specify endpoints such that the starting value is greater than the ending
value? In the first implementation of Fortran, nobody thought very hard about this
question, and they happened to implement in such a way that if you specified a
backward range, the computation was done once, for the given starting value, before
Fortran noticed that it was past the ending value.

Twenty years later, a bunch of computer scientists argued that this behavior was
wrong—that a loop with its starting value greater than its ending value should not
carry out its computation at all. This proposal for a “zero-trip loop” was strongly
opposed by Fortran old-timers, not because of any principle but because of all the
thousands of Fortran programs that had been written to rely on the one-trip behavior.

The point of this story is that the Fortran users had to debate the issue so heatedly
because they are stuck with only the control mechanisms that are built into the language.
Fortran doesn’t have the idea of function as data, so Fortran programmers can’t write
their own higher-order procedures. But you, using the techniques of this chapter, can

⇒

⇒

19.1

19.2

19.3

336 Part V Abstraction

Pitfalls

Boring Exercises

Real Exercises

car cdr

map cadr cdr

keep keep

combine word
sentence

accumulate

(every cdr ’((john lennon) (paul mccartney)
(george harrison) (ringo starr)))

> (three-arg-accumulate + 0 ’(4 5 6))
15

> (three-arg-accumulate + 0 ’())
0

create precisely the control mechanism that you need for whatever problem you happen
to be working on.

The most crucial point in inventing a higher-order function is to make sure that the
pattern you have in mind really does generalize. For example, if you want to write a
higher-order function for structured data, what is the base case? Will you use the tree
abstract data type, or will you use / recursion?

When you generalize a pattern by adding a new argument (typically a procedure),
be sure you add it to the recursive invocation(s) as well as to the formal parameter list!

What happens if you say the following?

How is this different from using , and why? How about instead of ?

Write . Don’t forget that has to return a sentence if its second argument
is a sentence, and a word if its second argument is a word.

(Hint: it might be useful to write a procedure that uses either or
depending on the types of its arguments.)

Write the three-argument version of that we described.

− − − − − −

19.4

19.5

19.6

19.7

every

Chapter 19 Implementing Higher-Order Functions 337

accumulate

left-accumulate
+

-

true-for-all? every
keep accumulate

true-for-any-pair?

#t

true-for-all-pairs?

#t

> (three-arg-accumulate cons ’() ’(a b c d e))
(A B C D E)

(accumulate - ’(2 3 4 5))

> (true-for-any-pair? equal? ’(a b c b a))
#F

> (true-for-any-pair? equal? ’(a b c c d))
#T

> (true-for-any-pair? < ’(20 16 5 8 6)) ;; 5 is less than 8
#T

> (true-for-all-pairs? equal? ’(a b c c d))
#F

> (true-for-all-pairs? equal? ’(a a a a a))
#T

> (true-for-all-pairs? < ’(20 16 5 8 6))
#F

Our combines elements from right to left. That is,

computes 2 (3 (4 5)). Write , which will compute ((2 3) 4) 5
instead. (The result will be the same for an operation such as , for which grouping
order doesn’t matter, but will be different for .)

Rewrite the procedure from Exercise 8.10. Do not use ,
, or .

Write a procedure that takes a predicate and a sentence
as arguments. The predicate must accept two words as its arguments. Your procedure
should return if the argument predicate will return true for any two adjacent words
in the sentence:

Write a procedure that takes a predicate and a sentence
as arguments. The predicate must accept two words as its arguments. Your procedure
should return if the argument predicate will return true for two adjacent words
in the sentence:

338 Part V Abstraction

19.8

19.9

19.10

19.11

19.12

19.13

true-for-all-pairs? true-for-any-pair?

true-for-any-pair?
not

tree-map deep-map datum
children

repeated

tree-reduce

deep-reduce tree-reduce

> (true-for-all-pairs? < ’(3 7 19 22 43))
#T

> (sort ’(4 23 7 5 16 3) <)
(3 4 5 7 16 23)

> (sort ’(4 23 7 5 16 3) >)
(23 16 7 5 4 3)

> (sort ’(john paul george ringo) before?)
(GEORGE JOHN PAUL RINGO)

> (tree-reduce
+
(make-node 3 (list (make-node 4 ’())

(make-node 7 ’())
(make-node 2 (list (make-node 3 ’())

(make-node 8 ’()))))))
27

> (deep-reduce word ’(r ((a (m b) (l)) (e (r)))))
RAMBLER

Rewrite (Exercise 19.7) using
(Exercise 19.6) as a helper procedure. Don’t use recursion in solving this problem
(except for the recursion you’ve already used to write). Hint:
You’ll find the procedure helpful.

Rewrite either of the sort procedures from Chapter 15 to take two arguments, a list
and a predicate. It should sort the elements of that list according to the given predicate:

Write , analogous to our , but for trees, using the
and selectors.

Write . (This is a hard exercise!)

Write . You may assume that the combiner argument can be
invoked with no arguments.

Write , similar to , but for structured lists:

