
Part III
Functions as Data

to do, that is.

functions

the whole family

100

number-of-arguments
count

acronym

first first every
every

first

make-conjugator

By now you’re accustomed to the idea of expressing a computational process in terms
of the function whose value you want to compute, rather than in terms of a sequence
of actions. But you probably think of a function (or the procedure that embodies it) as
something very different from the words, sentences, numbers, or other data that serve as
arguments to the functions. It’s like the distinction between verbs and nouns in English:
A verb represents something while a noun represents something

In this part of the book our goal is to overturn that distinction.

Like many big ideas, this one seems simple at first. All we’re saying is that a function
can have as its domain or range. One artificially simple example that you’ve
seen earlier was the function in Chapter 2. That function
takes a function as argument and returns a number. It’s not so different from ,
which takes a word or sentence as argument and returns a number.

But you’ll see that this idea leads to an enormous rise in the length and complexity
of the processes you can express in a short procedure, because now a process can give
rise to several other processes. A typical example is the procedure that we
introduced in Chapter 1 and will examine now in more detail. Instead of applying the

procedure to a single word, we use as an argument to a procedure, ,
that automatically applies it to every word of a sentence. A single process gives
rise to several processes.

The same idea of function as data allows us to write procedures that create and return
new procedures. At the beginning of Part II we showed a Scheme representation of a
function that computes the third person singular of a verb. Now, to illustrate the idea of
function as data, we’ll show how to represent in Scheme a function
whose range is of verb-conjugation functions:

compilers interpreters,

101

make-conjugator third-person
Never mind the notation for now; the idea to think about is that we can use

to create many functions similar to the example of
the Part II introduction:

We’ll explore only a tiny fraction of the area opened up by the idea of allowing a
program as data. Further down the same road is the study of and the
programs that translate your programs into instructions that computers can carry out. A
Scheme compiler is essentially a function whose domain is Scheme programs.

(define (make-conjugator prefix ending)
(lambda (verb) (sentence prefix (word verb ending))))

> (define third-person (make-conjugator ’she ’s))

> (third-person ’program)
(SHE PROGRAMS)

> (define third-person-plural-past (make-conjugator ’they ’ed))

> (third-person-plural-past ’play)
(THEY PLAYED)

> (define second-person-future-perfect
(make-conjugator ’(you will have) ’ed))

> (second-person-future-perfect ’laugh)
(YOU WILL HAVE LAUGHED)

Turning function machines into plowshares

first

first

8 Higher-Order Functions

Note: If you read Part IV before this one, pretend you didn’t; we are going to develop a different
technique for solving similar problems.

103

(define (two-firsts sent)
(se (first (first sent))

(first (last sent))))

> (two-firsts ’(john lennon))
(J L)

> (two-firsts ’(george harrison))
(G H)

(define (three-firsts sent)
(se (first (first sent))

(first (first (bf sent)))
(first (last sent))))

> (three-firsts ’(james paul mccartney))
(J P M)

You can use the function to find the first letter of a word. What if you want
to find the first letters of several words? You did this in the first chapter, as part of the
process of finding acronyms.

To start with a simple case, suppose you have two words (that is, a sentence of length
two). You could apply the procedure to each of them and combine the results:

Similarly, here’s the version for three words:

Every

first

Every

every

procedure

104 Part III Functions as Data

(define (first-letters sent)
(cond ((= (count sent) 1) (one-first sent))

((= (count sent) 2) (two-firsts sent))
((= (count sent) 3) (three-firsts sent))

))

(define (first-letters sent)
(every first sent))

> (first-letters ’(here comes the sun))
(H C T S)

> (first-letters ’(lucy in the sky with diamonds))
(L I T S W D)

every

every
every every

and so on

* Like all the procedures in this book that deal with words and sentences, and the other
procedures in this chapter are part of our extensions to Scheme. Later, in Chapter 17, we’ll
introduce the standard Scheme equivalents.

** Talking about strains our resolve to distinguish functions from the procedures that
implement them. Is the argument to a function or a procedure? If we think of itself

But this approach would get tiresome if you had a sentence of five words—you’d have
to write a procedure specifically for the case of exactly five words, and that procedure
would have five separate subexpressions to extract the first word, the second word, and
so on. Also, you don’t want a separate procedure for every sentence length; you want one
function that works no matter how long the sentence is. Using the tools you’ve already
learned about, the only possible way to do that would be pretty hideous:

.

But even this won’t work because there’s no way to say “and so on” in Scheme. You could
write a version that works for all sentences up to, let’s say, length 23, but you’d be in
trouble if someone tried to use your procedure on a 24-word sentence.

To write a better any-length first-letter procedure, you need to be able to say “apply the
function to word in the sentence, no matter how long the sentence is.”
Scheme provides a way to do this:*

takes two arguments. The second argument is a sentence, but the first is
something new: a used as an argument to another procedure.** Notice that

procedure

functions

invocation

word,

Chapter 8 Higher-Order Functions 105

first first-letters

first first every

every
every

every

every
every

as a procedure—that is, if we’re focusing on how it does its job—then of course we must say that
it does its job by repeatedly invoking the that we supply as an argument. But it’s equally
valid for us to focus attention on the function that the procedure implements, and that
function takes as arguments.

> (every last ’(while my guitar gently weeps))
(E Y R Y S)

> (every - ’(4 5 7 8 9))
(-4 -5 -7 -8 -9)

(define (plural noun)
(if (equal? (last noun) ’y)

(word (bl noun) ’ies)
(word noun ’s)))

> (every plural ’(beatle turtle holly kink zombie))
(BEATLES TURTLES HOLLIES KINKS ZOMBIES)

(define (double letter) (word letter letter))

> (every double ’girl)
(GG II RR LL)

> (every square 547)
(25 16 49)

every

there are no parentheses around the word in the body of ! By
now you’ve gotten accustomed to seeing parentheses whenever you see the name of a
function. But parentheses indicate an of a function, and we aren’t invoking

here. We’re using , the procedure itself, as an argument to .

These examples use with primitive procedures, but of course you can also define
procedures of your own and apply them to word of a sentence:

You can also use a word as the second argument to . In this case, the
first-argument procedure is applied to every letter of the word. The results are collected
in a sentence.

In all these examples so far, the first argument to was a function that returned
a and the value returned by was a sentence containing all the returned

all

itself

A Pause for Reflection

every
every

every

every

every

sentence.

higher-order function.

higher-order procedure.

another function
machine!

106 Part III Functions as Data

(define (sent-of-first-two wd)
(se (first wd) (first (bf wd))))

> (every sent-of-first-two ’(the inner light))
(T H I N L I)

> (every sent-of-first-two ’(tell me what you see))
(T E M E W H Y O S E)

> (define (g wd)
(se (word ’with wd) ’you))

> (every g ’(in out))
(WITHIN YOU WITHOUT YOU)

* You can get in trouble mathematically by trying to define a function whose domain includes
functions, because applying such a function to itself can lead to a paradox. In programming, the
corresponding danger is that applying a higher-order procedure to might result in a program
that runs forever.

words. The first argument to can also be a function that returns a In this
case, returns one long sentence:

A function that takes another function as one of its arguments, as does, is
called a If we focus our attention on procedures, the mechanism
through which Scheme computes functions, we think of as a procedure that takes
another procedure as an argument—a

Earlier we used the metaphor of the “function machine,” with a hopper at the top into
which we throw data, and a chute at the bottom from which the result falls, like a meat
grinder. Well, is a function machine into whose hopper we throw

Instead of a meat grinder, we have a metal grinder.*

Do you see what an exciting idea this is? We are accustomed to thinking of numbers
and sentences as “real things,” while functions are less like things and more like activities.
As an analogy, think about cooking. The real foods are the meats, vegetables, ice cream,
and so on. You can’t eat a recipe, which is analogous to a function. A recipe has to be
applied to ingredients, and the result of carrying out the recipe is an edible meal. It

Keep

result

keep

Keep

Joy of Cooking.

Chapter 8 Higher-Order Functions 107

* Some recipes may seem to include other recipes, because they say things like “add pesto
(recipe on p. 12).” But this is just composition of functions; the of the pesto procedure is
used as an argument to this recipe. The pesto recipe itself is not an ingredient.

> (keep even? ’(1 2 3 4 5))
(2 4)

> (define (ends-e? word) (equal? (last word) ’e))

> (keep ends-e? ’(please put the salami above the blue elephant))
(PLEASE THE ABOVE THE BLUE)

> (keep number? ’(1 after 909))
(1 909)

> (keep number? ’zonk23hey9)
239

> (define (vowel? letter) (member? letter ’(a e i o u)))

> (keep vowel? ’piggies)
IIE

would seem weird if a recipe used other recipes as ingredients: “Preheat the oven to 350
and insert your ” But in Scheme we can do just that.*

Cooking your cookbook is unusual, but the general principle isn’t. In some contexts
we do treat recipes as things rather than as algorithms. For example, people write recipes
on cards and put them into a recipe file box. Then they perform operations such as
searching for a particular recipe, sorting the recipes by category (main dish, dessert,
etc.), copying a recipe for a friend, and so on. The same recipe is both a process (when
we’re cooking with it) and the object of a process (when we’re filing it).

Once we have this idea, we can use functions of functions to provide many different
capabilities.

For instance, the function takes a predicate and a sentence as arguments. It
returns a sentence containing only the words of the argument sentence for which the
predicate is true.

will also accept a word as its second argument. In this case, it applies the
predicate to every letter of the word and returns another word:

Accumulate

independently

108 Part III Functions as Data

every

every keep
every keep

accumulate Accumulate

(define (real-word? wd)
(not (member? wd ’(a the an in of and for to with))))

> (keep real-word? ’(lucy in the sky with diamonds))
(LUCY SKY DIAMONDS)

> (every first (keep real-word? ’(lucy in the sky with diamonds)))
(L S D)

> (accumulate + ’(6 3 4 -5 7 8 9))
32

> (accumulate word ’(a c l u))
ACLU

> (accumulate max ’(128 32 134 136))
136

> (define (hyphenate word1 word2)
(word word1 ’- word2))

> (accumulate hyphenate ’(ob la di ob la da))
OB-LA-DI-OB-LA-DA

When we used to select the first letters of words earlier, we found the first
letters even of uninteresting words such as “the.” We’re working toward an acronym
procedure, and for that purpose we’d like to be able to discard the boring words.

In and , each element of the second argument contributes to
the overall result. That is, and apply a procedure to a single element at a
time. The overall result is a collection of individual results, with no interaction between
elements of the argument. This doesn’t let us say things like “Add up all the numbers
in a sentence,” where the desired output is a function of the entire argument sentence
taken as a whole. We can do this with a procedure named .
takes a procedure and a sentence as its arguments. It applies that procedure to two of
the words of the sentence. Then it applies the procedure to the result we got back and
another element of the sentence, and so on. It ends when it’s combined all the words of
the sentence into a single result.

(In all of our examples in this section, the second argument contains at least two elements.
In the “pitfalls” section at the end of the chapter, we’ll discuss what happens with smaller
arguments.)

Combining Higher-Order Functions

Chapter 8 Higher-Order Functions 109

Accumulate

keep accumulate
+

count

always-one every
always-one

accumulate +

count

* We mean, of course, “We’ll invoke with the procedure and our argument
sentence as its two arguments.” After you’ve been programming computers for a while, this sort of
abuse of English will come naturally to you.

> (accumulate + 781)
16

> (accumulate sentence ’colin)
(C O L I N)

(define (add-numbers sent)
(accumulate + (keep number? sent)))

> (add-numbers ’(4 calling birds 3 french hens 2 turtle doves))
9

> (add-numbers ’(1 for the money 2 for the show 3 to get ready
and 4 to go))

10

(define (always-one arg)
1)

every always-one

can also take a word as its second argument, using the letters as
elements:

What if we want to add up all the numbers in a sentence but ignore the words that aren’t
numbers? First we the numbers in the sentence, then we the result
with . It’s easier to say in Scheme:

We also have enough tools to write a version of the procedure, which finds
the number of words in a sentence or the number of letters in a word. First, we’ll define
a procedure that returns 1 no matter what its argument is. We’ll

over our argument sentence,* which will result in a sentence of as many
ones as there were words in the original sentence. Then we can use with
to add up the ones. This is a slightly roundabout approach; later we’ll see a more natural
way to find the of a sentence.

()

()

Choosing the Right Tool

110 Part III Functions as Data

acronym

every keep accumulate

Every

* What we mean by “usually” is that is most often used with an argument function that
returns a single word. If the function returns a sentence whose length might not be one, then the
number of words in the overall result could be anything!

You can now understand the procedure from Chapter 1:

So far you’ve seen three higher-order functions: , , and . How
do you decide which one to use for a particular problem?

transforms each element of a word or sentence individually. The result
sentence usually contains as many elements as the argument.*

(define (count sent)
(accumulate + (every always-one sent)))

> (count ’(the continuing story of bungalow bill))
6

(define (acronym phrase)
(accumulate word (every first (keep real-word? phrase))))

> (acronym ’(reduced instruction set computer))
RISC

> (acronym ’(structure and interpretation of computer programs))
SICP

every

()

()

()

function purpose first argument is a ...

Keep

Accumulate

every
keep accumulate

every
keep
accumulate

transforming
predicate
combining

Chapter 8 Higher-Order Functions 111

selects certain elements of a word or sentence and discards the others. The
elements of the result are elements of the argument, without transformation, but the
result may be smaller than the original.

transforms the entire word or sentence into a single result by combin-
ing all of the elements in some way.

These three pictures represent graphically the differences in the meanings of ,
, and . In the pictures, we’re applying these higher-order procedures

to sentences, but don’t forget that we could have drawn similar pictures in which the
higher-order procedures process the letters of a word.

Here’s another way to compare these three higher-order functions:

transform one-argument function
select one-argument function
combine two-argument function

112 Part III Functions as Data

every

keep
keep

accumulate

word

accumulate

> (every double ’girl)
(GG II RR LL)

> (se (double ’g)
(double ’i)
(double ’r)
(double ’l))

(GG II RR LL)

> (keep even? ’(1 2 3 4 5))
(2 4)

> (se (if (even? 1) 1 ’())
(if (even? 2) 2 ’())
(if (even? 3) 3 ’())
(if (even? 4) 4 ’())
(if (even? 5) 5 ’()))

(2 4)

> (accumulate word ’(a c l u))
ACLU

> (word ’a (word ’c (word ’l ’u)))
ACLU

To help you understand these differences, we’ll look at specific examples using each
of them, with each example followed by an equivalent computation done without the
higher-order procedure. Here is an example for :

You can, if you like, think of the first of these expressions as abbreviating the second.
An expression using can also be replaced with an expression that performs the

same computation without using . This time it’s a little messier:

Here’s how an can be expressed the long way:

(Of course will accept any number of arguments, so we could have computed the
same result with all four letters as arguments to the same invocation. But the version
we’ve shown here indicates how actually works; it combines the elements
one by one.)

Repeated

First-Class Functions and First-Class Sentences

loop

generalize

other machines

Chapter 8 Higher-Order Functions 113

first-letters I
I=1 I=2 N

every first

pigl every

keep every
every

pigl-sent first-letters

repeated

> ((repeated bf 3) ’(she came in through the bathroom window))
(THROUGH THE BATHROOM WINDOW)

> ((repeated plural 4) ’computer)
COMPUTERSSSS

If Scheme (or any dialect of Lisp) is your first programming language, having procedures
that operate on entire sentences at once may not seem like a big deal. But if you used
to program in some lesser language, you’re probably accustomed to writing something
like as a in which you have some variable named and you carry
out some sequence of steps for , , and so on, until you get to , the number of
elements. The use of higher-order functions allows us to express this problem all at once,
rather than as a sequence of events. Once you’re accustomed to the Lisp way of thinking,
you can tell yourself “just take of the sentence,” and that feels like a single
step, not a complicated task.

Two aspects of Scheme combine to permit this mode of expression. One, which
we’ve mentioned earlier, is that sentences are first-class data. You can use an entire
sentence as an argument to a procedure. You can type a quoted sentence in, or you can
compute a sentence by putting words together.

The second point is that functions are also first-class. This lets us write a procedure
like that applies to a single word, and then combine that with to translate an
entire sentence to Pig Latin. If Scheme didn’t have first-class functions, we couldn’t have
general-purpose tools like and , because we couldn’t say which function to
extend to all of a sentence. You’ll see later that without it would still be possible
to write a specific procedure and separately write a
procedure. But the ability to use a procedure as argument to another procedure lets us

the idea of “apply this function to every word of the sentence.”

All the higher-order functions you’ve seen so far take functions as arguments, but none of
them have functions as return values. That is, we have machines that can take machines
in their input hoppers, but now we’d like to think about machines that drop
out of their output chutes—machine factories, so to speak.

In the following example, the procedure returns a procedure:

114 Part III Functions as Data

repeated

(repeated bf 3)

repeated

(repeated square 4) 2

repeated item

> ((repeated square 2) 3)
81

> (define (double sent)
(se sent sent))

> ((repeated double 3) ’(banana))
(BANANA BANANA BANANA BANANA BANANA BANANA BANANA BANANA)

> (repeated square 4)
#<PROCEDURE>

> ((repeated square 4) 2)
65536

The procedure takes two arguments, a procedure and a number, and
returns a new procedure. The returned procedure is one that invokes the original
procedure repeatedly. For example, returns a function that takes
the butfirst of the butfirst of the butfirst of its argument.

Notice that all our examples start with two open parentheses. If we just invoked
at the Scheme prompt, we would get back a procedure, like this:

The procedure that we get back isn’t very interesting by itself, so we invoke it, like this:

To understand this expression, you must think carefully about its two subexpressions.
Two subexpressions? Because there are two open parentheses next to each other, it
would be easy to ignore one of them and therefore think of the expression as having
four atomic subexpressions. But in fact it has only two. The first subexpression,

, has a procedure as its value. The second subexpression, ,
has a number as its value. The value of the entire expression comes from applying the
procedure to the number.

All along we’ve been saying that you evaluate a compound expression in two steps:
First, you evaluate all the subexpressions. Then you apply the first value, which has to be a
procedure, to the rest of the values. But until now the first subexpression has always been
just a single word, the name of a procedure. Now we see that the first expression might
be an invocation of a higher-order function, just as any of the argument subexpressions
might be function invocations.

We can use to define , which returns a particular element of a
sentence:

⇒

⇒

Pitfalls

Chapter 8 Higher-Order Functions 115

every
keep accumulate

every
keep

or
any-numbers?

every

* As we said in Chapter 4, special forms aren’t procedures, and aren’t first-class.

(define (item n sent)
(first ((repeated bf (- n 1)) sent)))

> (item 1 ’(a day in the life))
A

> (item 4 ’(a day in the life))
THE

(define (any-numbers? sent) ;; wrong!
(accumulate or (every number? sent)))

> (sentence #T #F)
ERROR: ARGUMENT TO SENTENCE NOT A WORD OR SENTENCE: #F

> (every number? ’(a b 2 c 6))
ERROR: ARGUMENT TO SENTENCE NOT A WORD OR SENTENCE: #T

(define (any-numbers? sent)
(not (empty? (keep number? sent))))

Some people seem to fall in love with and try to use it in all problems, even
when or would be more appropriate.

If you find yourself using a predicate function as the first argument to , you
almost certainly mean to use instead. For example, we want to write a procedure
that determines whether any of the words in its argument sentence are numbers:

This is wrong for two reasons. First, since Boolean values aren’t words, they can’t be
members of sentences:

Second, even if you could have a sentence of Booleans, Scheme doesn’t allow a
special form, such as , as the argument to a higher-order function.* Depending on
your version of Scheme, the incorrect procedure might give an error
message about either of these two problems.

Instead of using , select the numbers from the argument and count them:

⇒

⇒

is

116 Part III Functions as Data

keep

Every
every

accumulate word
every

every
every quotient

quotient

every every

every
(quotient 6)

quotient

(define (spell-digit digit)
(item (+ 1 digit)

’(zero one two three four five six seven eight nine)))

> (every spell-digit 1971)
(ONE NINE SEVEN ONE)

(every (quotient 6) ’(1 2 3)) ;; wrong!

(quotient 6 1)
(quotient 6 2)
(quotient 6 3)

The function always returns a result of the same type (i.e., word or sentence)
as its second argument. This makes sense because if you’re selecting a subset of the words
of a sentence, you want to end up with a sentence; but if you’re selecting a subset of the
letters of a word, you want a word. , on the other hand, always returns a sentence.
You might think that it would make more sense for to return a word when its
second argument is a word. Sometimes that what you want, but sometimes not. For
example:

In the cases where you do want a word, you can just the sentence
that returns.

Remember that expects its first argument to be a function of just one
argument. If you invoke with a function such as , which expects two
arguments, you will get an error message from , complaining that it only got
one argument and wanted to get two.

Some people try to get around this by saying things like

This is a sort of wishful thinking. The intent is that Scheme should interpret the first
argument to as a fill-in-the-blank template, so that will compute the values of

But of course what Scheme really does is the same thing it always does: It evaluates
the argument expressions, then invokes . So Scheme will try to compute

and will give an error message.

We picked for this example because it requires exactly two arguments.
Many Scheme primitives that ordinarily take two arguments, however, will accept only
one. Attempting the same wishful thinking with one of these procedures is still wrong,

⇒

Chapter 8 Higher-Order Functions 117

every
+ 3 (+ 3) 3

every

8 0 every

(PAUL RINGO JOHN)

(every (+ 3) ’(1 2 3)) ;; wrong!

(define (beatle-number n)
(if (or (< n 1) (> n 4))

’()
(item n ’(john paul george ringo))))

> (beatle-number 3)
GEORGE

> (beatle-number 5)
()

> (every beatle-number ’(2 8 4 0 1))
(PAUL RINGO JOHN)

(se (beatle-number 2) (beatle-number 8) (beatle-number 4)
(beatle-number 0) (beatle-number 1))

(se ’paul ’() ’ringo ’() ’john)

but the error message is different. For example, suppose you try to add 3 to each of
several numbers this way:

The first argument to in this case isn’t “the procedure that adds 3,” but the result
returned by invoking with the single argument . returns the number , which
isn’t a procedure. So you will get an error message like “Attempt to apply non-procedure
3.”

The idea behind this mistake—looking for a way to “specialize” a two-argument
procedure by supplying one of the arguments in advance—is actually a good one. In the
next chapter we’ll introduce a new mechanism that does allow such specialization.

If the procedure you use as the argument to returns an empty sentence, then
you may be surprised by the results:

What happened to the and the ? Pretend that didn’t exist, and you had to do
it the hard way:

Using result replacement, we would get

which is just .

⇒

⇒

⇒

word,

word

118 Part III Functions as Data

every

every eed ou

first
first

accumulate
+ max

one-word

accumulate Accumulate

+ * word
sentence Accumulate

accumulate

> (every bf ’(i need you))
("" EED OU)

(first ’(one two three four))

(every first ’(one two three four))

(accumulate se ’(one-word))

> (accumulate + ’())
0

> (accumulate max ’())
ERROR: CAN’T ACCUMULATE EMPTY INPUT WITH THAT COMBINER

On the other hand, if ’s argument procedure returns an empty it will
appear in the result.

The sentence returned by has three words in it: the empty word, , and .

Don’t confuse

with

In the first case, we’re applying the procedure to a sentence; in the second, we’re
applying four separate times, to each of the four words separately.

What happens if you use a one-word sentence or one-letter word as argument to
? It returns that word or that letter, without even invoking the given

procedure. This makes sense if you’re using something like or as the accumulator,
but it’s disconcerting that

returns the .

What happens if you give an empty sentence or word?
accepts empty arguments for some combiners, but not for others:

The combiners that can be used with an empty sentence or word are , , , and
. checks specifically for one of these combiners.

Why should these four procedures, and no others, be allowed to an
empty sentence or word? The difference between these and other combiners is that you

⇒

−∞

max

Accumulate

accumulate

accumulate

+
0 (+ 0)

word

any

identity element
anything anything.

Chapter 8 Higher-Order Functions 119

> (+)
0

> (max)
ERROR: NOT ENOUGH ARGUMENTS TO #<PROCEDURE>.

> (accumulate * ’())
1

((repeated bf 3) 987654)

max* PC Scheme returns zero for an invocation of with no arguments, but that’s the wrong
answer. If anything, the answer would have to be .

can invoke them with no arguments, whereas , for example, requires at least one
number:

actually invokes the combiner with no arguments in order to find out what
value to return for an empty sentence or word. We would have liked to implement

so that procedure that can be invoked with no arguments would be
accepted as a combiner to accumulate the empty sentence or word. Unfortunately,
Scheme does not provide a way for a program to ask, “How many arguments will this
procedure accept?” The best we could do was to build a particular set of zero-argument-
okay combiners into the definition of .

Don’t think that the returned value for an empty argument is always zero or empty.

The explanation for this behavior is that any function that works with no arguments
returns its in that case. What’s an identity element? The function has
the identity element because returns the Similarly, the empty
word is the identity element for . In general, a function’s identity element has the
property that when you invoke the function with the identity element and something
else as arguments, the return value is the something else. It’s a Scheme convention
that a procedure with an identity element returns that element when invoked with no
arguments.*

The use of two consecutive open parentheses to invoke the procedure returned by a
procedure is a strange-looking notation:

8.1

8.2

Boring Exercises

120 Part III Functions as Data

cond
cond

repeated
bf 3

bfthree
(bfthree 987654)

987654

repeated repeated

Repeated

(repeated bf 3 987654) ;; wrong

> (every last ’(algebra purple spaghetti tomato gnu))

> (keep number? ’(one two three four))

> (accumulate * ’(6 7 13 0 9 42 17))

> (member? ’h (keep vowel? ’(t h r o a t)))

> (every square (keep even? ’(87 4 7 12 0 5)))

> (accumulate word (keep vowel? (every first ’(and i love her))))

> ((repeated square 0) 25)

> (every (repeated bl 2) ’(good day sunshine))

> (vowel? ’birthday)
IA

Don’t confuse this with the similar-looking notation, in which the outer parentheses
have a special meaning (delimiting a clause). Here, the parentheses have their
usual meaning. The inner parentheses invoke the procedure with arguments

and . The value of that expression is a procedure. It doesn’t have a name, but for the
purposes of this paragraph let’s pretend it’s called . Then the outer parentheses
are basically saying ; they apply the unnamed procedure to the
argument .

In other words, there are two sets of parentheses because there are two functions
being invoked: and the function returned by . So don’t say

just because it looks more familiar. isn’t a function of three arguments.

What does Scheme return as the value of each of the following expressions? Figure
it out for yourself before you try it on the computer.

Fill in the blanks in the following Scheme interactions:

8.3

Chapter 8 Higher-Order Functions 121

Describe each of the following functions in English. Make sure to include a
description of the domain and range of each function. Be as precise as possible; for
example, “the argument must be a function of one numeric argument” is better than
“the argument must be a function.”

> (first ’(golden slumbers))
(G S)

> (’(golden slumbers))
GOLDEN

> (’(little child))
(E D)

> ((’(little child)))
ED

> (+ ’(2 3 4 5))
(2 3 4 5)

> (+ ’(2 3 4 5))
14

(define (f a)
(keep even? a))

(define (g b)
(every b ’(blue jay way)))

(define (h c d)
(c (c d)))

(define (i e)
(/ (accumulate + e) (count e)))

accumulate

sqrt

repeated

(repeated sqrt 3)

8.4

8.5

Real Exercises

choose-beatles

transform-beatles

If you
read Part IV before this, do not use recursion in solving these problems; use higher order functions
instead.

122 Part III Functions as Data

Note: Writing helper procedures may be useful in solving some of these problems.

Write a procedure that takes a predicate function as its argument
and returns a sentence of just those Beatles (John, Paul, George, and Ringo) that satisfy
the predicate. For example:

Write a procedure that takes a procedure as an argument,
applies it to each of the Beatles, and returns the results in a sentence:

(repeated even? 2)

(repeated first 2)

(repeated (repeated bf 3) 2)

(define (ends-vowel? wd) (vowel? (last wd)))

(define (even-count? wd) (even? (count wd)))

> (choose-beatles ends-vowel?)
(GEORGE RINGO)

> (choose-beatles even-count?)
(JOHN PAUL GEORGE)

(define (amazify name)
(word ’the-amazing- name))

> (transform-beatles amazify)
(THE-AMAZING-JOHN THE-AMAZING-PAUL THE-AMAZING-GEORGE
THE-AMAZING-RINGO)

> (transform-beatles butfirst)
(OHN AUL EORGE INGO)

8.6

8.7

8.8

words

letter-count

exaggerate

Chapter 8 Higher-Order Functions 123

> (words ’cab)
(CHARLIE ALPHA BRAVO)

> (letter-count ’(fixing a hole))
11

> (exaggerate ’(i ate 3 potstickers))
(I ATE 6 POTSTICKERS)

> (exaggerate ’(the chow fun is good here))
(THE CHOW FUN IS GREAT HERE)

* Exercise 14.5 in Part IV asks you to solve this same problem using recursion. Here we are
asking you to use higher-order functions. Whenever we pose the same problem in both parts, we’ll
cross-reference them in brackets as we did here. When you see the problem for the second time,
you might want to consult your first solution for ideas.

When you’re talking to someone over a noisy radio connection, you sometimes have
to spell out a word in order to get the other person to understand it. But names of letters
aren’t that easy to understand either, so there’s a standard code in which each letter is
represented by a particular word that starts with the letter. For example, instead of “B”
you say “bravo.”

Write a procedure that takes a word as its argument and returns a sentence of the
names of the letters in the word:

(You may make up your own names for the letters or look up the standard ones if you
want.)

Hint: Start by writing a helper procedure that figures out the name for a single letter.

[14.5]* Write a procedure that takes a sentence as its argument
and returns the total number of letters in the sentence:

[12.5] Write an procedure which exaggerates sentences:

It should double all the numbers in the sentence, and it should replace “good” with
“great,” “bad” with “terrible,” and anything else you can think of.

−

8.9

8.10

8.11

8.12

8.13

every

124 Part III Functions as Data

every
every

keep
keep

accumulate
accumulate

true-for-all?
#t

base-grade
grade-modifier

count-ums

phone-unspell
POPCORN 7672676

cond

> (true-for-all? even? ’(2 4 6 8))
#T

> (true-for-all? even? ’(2 6 3 4))
#F

> (gpa ’(A A+ B+ B))
3.67

> (count-ums
’(today um we are going to um talk about functional um programming))

3

What procedure can you use as the first argument to so that for any sentence
used as the second argument, returns that sentence?

What procedure can you use as the first argument to so that for any sentence used
as the second argument, returns that sentence?

What procedure can you use as the first argument to so that for any
sentence used as the second argument, returns that sentence?

Write a predicate that takes two arguments, a predicate proce-
dure and a sentence. It should return if the predicate argument returns true for
word in the sentence.

[12.6] Write a GPA procedure. It should take a sentence of grades as its argument
and return the corresponding grade point average:

Hint: write a helper procedure that takes a grade as argument and returns
0, 1, 2, 3, or 4, and another helper procedure that returns .33, 0, or
.33, depending on whether the grade has a minus, a plus, or neither.

[11.2] When you teach a class, people will get distracted if you say “um” too many
times. Write a that counts the number of times “um” appears in a sentence:

[11.3] Write a procedure that takes a spelled version of a phone
number, such as , and returns the real phone number, in this case .
You will need to write a helper procedure that uses an 8-way expression to translate
a single letter into a digit.

8.14 subword

> (subword ’polythene 5 8)
THEN

Chapter 8 Higher-Order Functions 125

Write the procedure that takes three arguments: a word, a starting
position number, and an ending position number. It should return the subword
containing only the letters between the specified positions:

