
“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so, it
would be; but as it isn’t, it ain’t. That’s logic.”

If

if

#t #f
Booleans

71

6 True and False

(define (greet name)
(if (equal? (first name) ’professor)

(se ’(i hope i am not bothering you) ’professor (last name))
(se ’(good to see you) (first name))))

> (greet ’(matt wright))
(GOOD TO SEE YOU MATT)

> (greet ’(professor harold abelson))
(I HOPE I AM NOT BOTHERING YOU PROFESSOR ABELSON)

We still need one more thing before we can write more interesting programs: the ability
to make decisions. Scheme has a way to say “if this is true, then do this thing, otherwise
do something else.”

Here’s a procedure that greets a person:

The program greets a person by checking to see if that person is a professor. If so, it
says, “I hope I am not bothering you” and then the professor’s name. But if it’s a regular
person, the program just says, “Good to see you,” and then the person’s first name.

takes three arguments. The first has to be either true or false. (We’ll talk in a
moment about exactly what true and false look like to Scheme.) In the above example,
the first word of the person’s name might or might not be equal to the word “Professor.”
The second and third arguments are expressions; one or the other of them is evaluated
depending on the first argument. The value of the entire expression is the value of
either the second or the third argument.

You learned in Chapter 2 that Scheme includes a special data type called
to represent true or false values. There are just two of them: for “true” and for

> (= 3 4)
()

Predicates

some

subject
predicate.

if

if
greet

#t #f
equal? #t

#f

predicate.

72 Part II Composition of Functions

> (if #t (+ 4 5) (* 2 7))
9

> (member? ’mick ’(dave dee dozy beaky mick and tich))
#T
> (member? ’mick ’(john paul george ringo))
#F
> (member? ’e ’truly)
#F

() #f

“false.”*

We said that the first argument to has to be true or false. Of course, it would be
silly to say

because what’s the point of using if we already know which branch will be followed?
Instead, as in the example, we call some procedure whose return value will be
either true or false, depending on the particular arguments we give it.

A function that returns either or is called a ** You’ve already seen the
predicate. It takes two arguments, which can be of any type, and returns if the

two arguments are the same value, or if they’re different. It’s a convention in Scheme
that the names of predicates end with a question mark, but that’s just a convention. Here
are some other useful predicates:

* In versions of Scheme, the empty sentence is considered false. That is, and may
be the same thing. The reason that we can’t be definite about this point is that older versions of
Scheme follow the traditional Lisp usage, in which the empty sentence is false, but since then a
standardization committee has come along and insisted that the two values should be different. In
this book we’ll consider them as different, but we’ll try to avoid examples in which it matters. The
main point is that you shouldn’t be surprised if you see something like this:

in the particular implementation of Scheme that you’re using.

** Why is it called that? Think about an English sentence, such as “Ringo is a drummer.” As you
may remember from elementary school, “Ringo” is the of that sentence, and “is a drummer”
is the That predicate could be truthfully attached to some subjects but not others. For
example, it’s true of “Neil Peart” but not of “George Harrison.” So the predicate “is a drummer”
can be thought of as a function whose value is true or false.

Chapter 6 True and False 73

Member?
= > < >= <=

Before? < Empty?

equal? =

equal?

> (member? ’y ’truly)
#T
> (= 3 4)
#F
> (= 67 67)
#T
> (> 98 97)
#T
> (before? ’zorn ’coleman)
#F
> (before? ’pete ’ringo)
#T
> (empty? ’(abbey road))
#F
> (empty? ’())
#T
> (empty? ’hi)
#F
> (empty? (bf (bf ’hi)))
#T
> (empty? "")
#T

> (number? ’three)
#F
> (number? 74)
#T
> (boolean? #f)
#T
> (boolean? ’(the beatles))
#F

takes two arguments; it checks to see if the first one is a member of the second.
The , , , , and functions take two numbers as arguments and do the obvious
comparisons. (By the way, these are exceptions to the convention about question marks.)

is like , but it compares two words alphabetically. checks to see if its
argument is either the empty word or the empty sentence.

Why do we have both and in Scheme? The first of these works on any
kind of Scheme data, while the second is defined only for numbers. You could get
away with always using , but the more specific form makes your program more
self-explanatory; people reading the program know right away that you’re comparing
numbers.

There are also several predicates that can be used to test the type of their argument:

-
abs

Using Predicates

74 Part II Composition of Functions

> (boolean? 234)
#F
> (boolean? #t)
#T
> (word? ’flying)
#T
> (word? ’(dig it))
#F
> (word? 87)
#T
> (sentence? ’wait)
#F
> (sentence? ’(what goes on))
#T

(define (vowel? letter)
(member? letter ’aeiou))

(define (positive? number)
(> number 0))

(define (abs num)
(if (< num 0)

(- num)
num))

(define (buzz num)
(if (or (divisible? num 7) (member? 7 num))

’buzz
num))

Of course, we can also define new predicates:

Here’s a procedure that returns the absolute value of a number:

(If you call with just one argument, it returns the negative of that argument.) Scheme
actually provides as a primitive procedure, but we can redefine it.

Do you remember how to play buzz? You’re all sitting around the campfire and
you go around the circle counting up from one. Each person says a number. If your
number is divisible by seven or if one of its digits is a seven, then instead of calling out
your number, you say “buzz.”

Or

Remainder

Or
And

not

buzz
divisible?

buzz-helper

or
or

and and

helper procedure

Chapter 6 True and False 75

(define (divisible? big little)
(= (remainder big little) 0))

(define (plural wd)
(word wd ’s))

> (plural ’beatle)
BEATLES

> (plural ’computer)
COMPUTERS

> (plural ’fly)
FLYS

(define (plural wd)
(if (equal? (last wd) ’y)

(word (bl wd) ’ies)
(word wd ’s)))

can take any number of arguments, each of which must be true or false. It returns
true if any of its arguments are true, that is, if the first argument is true the second
argument is true . . . (, as you know, takes two integers and tells you what
the remainder is when you divide the first by the second. If the remainder is zero, the
first number is divisible by the second.)

is one of three functions in Scheme that combine true or false values to produce
another true or false value. returns true if all of its arguments are true, that is, the
first second . . . Finally, there’s a function that takes exactly one argument,
returning true if that argument is false and vice versa.

In the last example, the procedure we really wanted to write was , but we found
it useful to define also. It’s quite common that the easiest way to solve
some problem is to write a to do part of the work. In this case the helper
procedure computes a function that’s meaningful in itself, but sometimes you’ll want to
write procedures with names like that are useful only in the context of
one particular problem.

Let’s write a program that takes a word as its argument and returns the plural of that
word. Our first version will just put an “s” on the end:

This works for most words, but not those that end in “y.” Here’s version two:

If

And Or

Is a Special Form

So Are and

if

if sure

if
if

if

And or
or

And

76 Part II Composition of Functions

(if (= 3 3)
’sure
(factorial 1000))

(define (divisible? big small)
(= (remainder big small) 0))

(define (num-divisible-by-4? x)
(and (number? x) (divisible? x 4)))

> (num-divisible-by-4? 16)
#T

* Since you can start a new line in the middle of an expression, in some cases the arguments
will be “top to bottom” rather than “left to right,” but don’t forget that Scheme doesn’t care about
line breaks. That’s why Lisp programmers always talk as if their programs were written on one
enormously long line.

This isn’t exactly right either; it thinks that the plural of “boy” is “boies.” We’ll ask you to
add some more rules in Exercise 6.12.

There are a few subtleties that we haven’t told you about yet. First of all, is a special
form. Remember that we’re going to need the value of only one of its last two arguments.
It would be wasteful for Scheme to evaluate the other one. So if you say

won’t compute the factorial of 1000 before returning .

The rule is that always evaluates its first argument. If the value of that argument
is true, then evaluates its second argument and returns its value. If the value of the
first argument is false, then evaluates its third argument and returns that value.

and are also special forms. They evaluate their arguments in order from left to
right* and stop as soon as they can. For , this means returning true as soon as any of
the arguments is true. returns false as soon as any argument is false. This turns out
to be useful in cases like the following:

Everything That Isn’t False Is True

every

semipredicates

Chapter 6 True and False 77

x 4
divisible? and

number? divisible?
x

#f 4

#T #f

#f

And or or
or

> (num-divisible-by-4? 6)
#F

> (num-divisible-by-4? ’aardvark)
#F

> (divisible? ’aardvark 4)
ERROR: AARDVARK IS NOT A NUMBER

> (if (+ 3 4) ’yes ’no)
YES

(define (integer-quotient big little)
(if (divisible? big little)

(/ big little)
#f))

> (integer-quotient 27 3)
9

> (integer-quotient 12 5)
#F

We want to see if is a number, and, if so, if it’s divisible by . It would be an error to
apply to a nonnumber. If were an ordinary procedure, the two tests
(and) would both be evaluated before we would have a chance
to pay attention to the result of the first one. Instead, if turns out not to be a number,
our procedure will return without trying to divide it by .

isn’t the only true value. In fact, value is considered true except for .

This allows us to have that give slightly more information than just true
or false. For example, we can write an integer quotient procedure. That is to say,
our procedure will divide its first argument by the second, but only if the first is evenly
divisible by the second. If not, our procedure will return .

and are also semipredicates. We’ve already explained that returns a true
result as soon as it evaluates a true argument. The particular true value that returns
is the value of that first true argument:

And

integer-quotient

If

cond

Decisions, Decisions, Decisions

78 Part II Composition of Functions

> (or #f 3 #f 4)
3

> (and 1 2 3 4 5)
5

(define (integer-quotient big little) ;; alternate version
(and (divisible? big little)

(/ big little)))

(define (roman-value letter)
(if (equal? letter ’i)

1
(if (equal? letter ’v)

5
(if (equal? letter ’x)

10
(if (equal? letter ’l)

50
(if (equal? letter ’c)

100
(if (equal? letter ’d)

500
(if (equal? letter ’m)

1000
’huh?))))))))

returns a true value only if all of its arguments are true. In that case, it returns the
value of the last argument:

As an example in which this behavior is useful, we can rewrite
more tersely:

is great for an either-or choice. But sometimes there are several possibilities to
consider:

That’s pretty hideous. Scheme provides a shorthand notation for situations like this in
which you have to choose from among several possibilities: the special form .

()
()
()
()
()
()
()
()

()

cond
cond

cond

Cond

if

cond

Cond cond
cond

cond

most some

two expressions
cond clause.

condition
consequent

Chapter 6 True and False 79

(define (roman-value letter)
(cond ((equal? letter ’i) 1)

((equal? letter ’v) 5)
((equal? letter ’x) 10)
((equal? letter ’l) 50)
((equal? letter ’c) 100)
((equal? letter ’d) 500)
((equal? letter ’m) 1000)
(else ’huh?)))

(define (roman-value letter)
(cond (equal? letter ’i) 1

(equal? letter ’v) 5
(equal? letter ’x) 10
(equal? letter ’l) 50
(equal? letter ’c) 100
(equal? letter ’d) 500
(equal? letter ’m) 1000
else ’huh?))

(equal? letter ’l) 50

The tricky thing about is that it doesn’t use parentheses in quite the same way
as the rest of Scheme. Ordinarily, parentheses mean procedure invocation. In ,

of the parentheses still mean that, but of them are used to group pairs of tests
and results. We’ve reproduced the same expression below, indicating the funny
ones in boldface.

takes any number of arguments, each of which is inside a pair
of parentheses. Each argument is called a In the example above, one typical
clause is

The outermost parentheses on that line enclose two expressions. The first of the two
expressions (the) is taken as true or false, just like the first argument to . The
second expression of each pair (the) is a candidate for the return value of the
entire invocation.

examines its arguments from left to right. Remember that since is a
special form, its arguments are not evaluated ahead of time. For each argument,
evaluates the first of the two expressions within the argument. If that value turns out to
be true, then evaluates the second expression in the same argument, and returns

cond

else
else

cond

cond

#t #f
true false

cond

not

most restrictive

is

80 Part II Composition of Functions

* What if you don’t use an clause at all? If none of the clauses has a true condition, then
the return value is unspecified. In other words, always use .

** Conditions are mutually exclusive if only one of them can be true at a time.

(define (truefalse value)
(cond (value ’true)

(else ’false)))

> (truefalse (= 2 (+ 1 1)))
TRUE

> (truefalse (= 5 (+ 2 2)))
FALSE

(cond ((number? (first sent))) ;; wrong
((empty? sent))

)

(cond ((empty? sent))
((and (not (empty? sent)) (number? (first sent))))

)

else
else

that value without examining any further arguments. But if the value is false, then
does evaluate the second expression; instead, it goes on to the next argument.

By convention, the last argument always starts with the word instead of an
expression. You can think of this as representing a true value, but doesn’t mean
true in any other context; you’re only allowed to use it as the condition of the last clause
of a .*

Don’t get into bad habits of thinking about the appearance of clauses in terms
of “two parentheses in a row.” That’s often the case, but not always. For example,
here is a procedure that translates Scheme true or false values (and) into more
human-readable words and .

When a tests several possible conditions, they might not be mutually exclu-
sive.** This can be either a source of error or an advantage in writing efficient programs.
The trick is to make the test first. For example, it would be an error to say

. . .
. . .

. . .

because the first test only makes sense once you’ve already established that there a first
word of the sentence. On the other hand, you don’t have to say

. . .
. . .

. . .

If

greet

if

if
if

Is Composable

Chapter 6 True and False 81

> (greet ’(brian epstein))
(PLEASED TO MEET YOU BRIAN -- HOW ARE YOU?)

> (greet ’(professor donald knuth))
(PLEASED TO MEET YOU PROFESSOR KNUTH -- HOW ARE YOU?)

(define (greet name)
(if (equal? (first name) ’professor)

(se ’(pleased to meet you)
’professor
(last name)
’(-- how are you?))

(se ’(pleased to meet you)
(first name)
’(-- how are you?))))

(define (greet name)
(se ’(pleased to meet you)

(if (equal? (first name) ’professor)
(se ’professor (last name))
(first name))

’(-- how are you?)))

because you’ve already established that the sentence is nonempty if you get as far as the
second clause.

Suppose we want to write a procedure that works like this:

The response of the program in these two cases is almost the same; the only difference is
in the form of the person’s name.

This procedure could be written in two ways:

The second version avoids repeating the common parts of the response by using
within a larger expression.

Some people find it counterintuitive to use as we did in the second version.
Perhaps the reason is that in some other programming languages, is a “command”
instead of a function like any other. A mechanism that selects one part of a program
to run, and leaves out another part, may seem too important to be a mere argument

⇒

⇒

⇒

Pitfalls

every

82 Part II Composition of Functions

(equal? argument (or ’yes ’no)) ; wrong!

if
if and

or

if
if

cond

cond

member?

member?

and or

yes no

argument equal yes or no
or

* Strictly speaking, since the argument expressions to a special form aren’t evaluated, is a
function whose domain is expressions, not their values. But many special forms, including , ,
and , are designed to act as if they were ordinary functions, the kind whose arguments Scheme
evaluates in advance. The only difference is that it is sometimes possible for Scheme to figure out
the correct return value after evaluating only some of the arguments. Most of the time we’ll just
talk about the domains and ranges of these special forms as if they were ordinary functions.

subexpression. But in Scheme, the value returned by function can be used as part
of a larger expression.*

We aren’t saying anything new here. We’ve already explained the idea of composition
of functions, and we’re just making the same point again about . But we’ve learned
that many students expect to be an exception, so we’re taking the opportunity to
emphasize the point: There are no exceptions to this rule.

The biggest pitfall in this chapter is the unusual notation of . Keeping track of
the parentheses that mean function invocation, as usual, and the parentheses that just
group the parts of a clause is tricky until you get accustomed to it.

Many people also have trouble with the asymmetry of the predicate. The
first argument is something small; the second is something big. (The order of arguments
is the same as the order of a typical English sentence about membership: “Is Mick a
member of the Beatles?”) It seems pretty obvious when you look at an example in which
both arguments are quoted constant values, but you can get in trouble when you define
a procedure and use its parameters as the arguments to . Compare writing a
procedure that says, “does the letter E appear in this word?” with one that says, “is this
letter a vowel?”

Many people try to use and with the full flexibility of the corresponding
English words. Alas, Scheme is not English. For example, suppose you want to know
whether the argument to a procedure is either the word or the word . You can’t
say

This sounds promising: “Is the to the word the word ?”
But the arguments to must be true-or-false values, not things you want to check for

⇒

6.1

Boring Exercises

Chapter 6 True and False 83

or
member?

(not (even? n)) #t #f

(or (equal? argument ’yes) (equal? argument ’no))

(member? argument ’(yes no))

(define (odd? n)
(if (not (even? n)) #t #f))

(define (odd? n)
(not (even? n)))

(cond ((= 3 4) ’(this boy))
((< 2 5) ’(nowhere man))
(else ’(two of us)))

(cond (empty? 3)
(square 7)
(else 9))

(define (third-person-singular verb)
(cond ((equal? verb ’be) ’is)

((equal? (last verb) ’o) (word verb ’es))
(else (word verb ’s))))

(third-person-singular ’go)

equality with something else. You have to make two separate equality tests:

In this particular case, you could also solve the problem by saying

but the question of trying to use as if it were English comes up in other cases for which
won’t help.

This isn’t exactly a pitfall, because it won’t stop your program from working, but
programs like

are redundant. Instead, you could just say

since the value of is already or .

What values are printed when you type these expressions to Scheme? (Figure it out
in your head before you try it on the computer.)

AM PM

6.2

6.3

6.4

6.5

Real Exercises

84 Part II Composition of Functions

cond if

if cond

european-time
american-time

(or #f #f #f #t)

(and #f #f #f #t)

(or (= 2 3) (= 4 3))

(not #f)

(or (not (= 2 3)) (= 4 3))

(or (and (= 2 3) (= 3 3)) (and (< 2 3) (< 3 4)))

(define (sign number)
(if (< number 0)

’negative
(if (= number 0)

’zero
’positive)))

(define (utensil meal)
(cond ((equal? meal ’chinese) ’chopsticks)

(else ’fork)))

> (european-time ’(8 am))
8

What values are printed when you type these expressions to Scheme? (Figure it out
in your head before you try it on the computer.)

Rewrite the following procedure using a instead of the s:

Rewrite the following procedure using an instead of the :

Note: Writing helper procedures may be useful in solving some of these problems.

Write a procedure to convert a time from American /
notation into European 24-hour notation. Also write , which does the
opposite:

6.6

6.7

6.8

Chapter 6 True and False 85

teen?

type-of
word sentence number boolean

number

indef-article

h hour

> (european-time ’(4 pm))
16

> (american-time 21)
(9 PM)

> (american-time 12)
(12 PM)

> (european-time ’(12 am))
24

> (type-of ’(getting better))
SENTENCE

> (type-of ’revolution)
WORD

> (type-of (= 3 3))
BOOLEAN

> (indef-article ’beatle)
(A BEATLE)

> (indef-article ’album)
(AN ALBUM)

Getting noon and midnight right is tricky.

Write a predicate that returns true if its argument is between 13 and 19.

Write a procedure that takes anything as its argument and returns one of
the words , , , or :

(Even though numbers are words, your procedure should return if its argument
is a number.)

Feel free to check for more specific types, such as “positive integer,” if you are so inclined.

Write a procedure that works like this:

Don’t worry about silent initial consonants like the in .

6.9

6.10

6.11

86 Part II Composition of Functions

1 book
2 books thismany

sort2

valid-date?
#t

> (thismany 1 ’partridge)
(1 PARTRIDGE)

> (thismany 3 ’french-hen)
(3 FRENCH-HENS)

> (sort2 ’(5 7))
(5 7)

> (sort2 ’(7 5))
(5 7)

> (valid-date? 10 4 1949)
#T

> (valid-date? 20 4 1776)
#F

> (valid-date? 5 0 1992)
#F

> (valid-date? 2 29 1900)
#F

> (valid-date? 2 29 2000)
#T

Sometimes you must choose the singular or the plural of a word: but
. Write a procedure that takes two arguments, a number and a

singular noun, and combines them appropriately:

Write a procedure that takes as its argument a sentence containing two
numbers. It should return a sentence containing the same two numbers, but in ascending
order:

Write a predicate that takes three numbers as arguments, repre-
senting a month, a day of the month, and a year. Your procedure should return if
the numbers represent a valid date (e.g., it isn’t the 31st of September). February has 29
days if the year is divisible by 4, except that if the year is divisible by 100 it must also be
divisible by 400.

6.12

6.13

6.14

Chapter 6 True and False 87

plural y y
boy x

greet

describe-time

Make handle correctly words that end in but have a vowel before the ,
such as . Then teach it about words that end in (box). What other special cases
can you find?

Write a better procedure that understands as many different kinds of names
as you can think of:

Write a procedure that takes a number of seconds as its argument
and returns a more useful description of that amount of time:

> (greet ’(john lennon))
(HELLO JOHN)

> (greet ’(dr marie curie))
(HELLO DR CURIE)

> (greet ’(dr martin luther king jr))
(HELLO DR KING)

> (greet ’(queen elizabeth))
(HELLO YOUR MAJESTY)

> (greet ’(david livingstone))
(DR LIVINGSTONE I PRESUME?)

> (describe-time 45)
(45 SECONDS)

> (describe-time 930)
(15.5 MINUTES)

> (describe-time 30000000000)
(9.506426344208686 CENTURIES)

