
Part II
Composition of Functions

s

run runs

day tripper day tripper

she

sing she sings

(define (third-person verb)
(sentence ’she (add-s verb)))

add-s

sentence

third-person sentence add-s

third-person

26

The big idea in this part of the book is deceptively simple. It’s that we can take the value
returned by one function and use it as an argument to another function. By “hooking
up” two functions in this way, we invent a new, third function. For example, let’s say we
have a function that adds the letter to the end of a word:

(“ ”) = “ ”

and another function that puts two words together into a sentence:

(“ ”, “ ”) = “ ”

We can combine these to create a new function that represents the third person singular
form of a verb:

(verb) = (“ ”, (verb))

That general formula looks like this when applied to a particular verb:

(“ ”) = “ ”

The way we say it in Scheme is

(When we give an example like this at the beginning of a part, don’t worry about the fact
that you don’t recognize the notation. The example is meant as a preview of what you’ll
learn in the coming chapters.)

27

We know that this idea probably doesn’t look like much of a big deal to you. It seems
obvious. Nevertheless, it will turn out that we can express a wide variety of computational
algorithms by linking functions together in this way. This linking is what we mean by
“functional programming.”

In a bucket brigade, each person hands a result to the next.

26 (+ 14 7)

+ 14 7

3 Expressions

evaluates

expression.

atom atomic expression
compound expression,

subexpressions.

call invoke
apply

29

* In other programming languages, the name for what you type might be a “command” or an
“instruction.” The name “expression” is meant to emphasize that we are talking about the notation
in which you ask the question, as distinct from the idea in your head, just as in English you express
an idea in words. Also, in Scheme we are more often asking questions rather than telling the
computer to take some action.

The interaction between you and Scheme is called the “read-eval-print loop.” Scheme
reads what you type, it, and prints the answer, and then does the same thing over
again. We’re emphasizing the word “evaluates” because the essence of understanding
Scheme is knowing what it means to evaluate something.

Each question you type is called an * The expression can be a single value,
such as , or something more complicated in parentheses, such as . The
first kind of expression is called an (or), while the second kind of
expression is called a because it’s made out of the smaller expressions

, , and . The metaphor is from chemistry, where atoms of single elements are
combined to form chemical compounds. We sometimes call the expressions within a
compound expression its

Compound expressions tell Scheme to “do” a procedure. This idea is so important
that it has a lot of names. You can a procedure; you can a procedure; or you
can a procedure to some numbers or other values. All of these mean the same
thing.

If you’ve programmed before in some other language, you’re probably accustomed
to the idea of several different types of statements for different purposes. For example,
a “print statement” may look very different from an “assignment statement.” In Scheme,

× ×

2 3 (+ 2 3)

* and again

Little People

(+ (+ 2 3) (+ 4 5))

(- (+ 5 8) (+ 2 4))

doesn’t

self-evaluating;

numbers, expressions that add up
those

expressions that add up

any

never

30 Part II Composition of Functions

everything is done by calling procedures, just as we’ve been doing here. Whatever you
want to do, there’s only one notation: the compound expression.

Notice that we said a compound expression contains expressions. This means
that you can’t understand what an expression is until you already understand what an
expression is. This sort of circularity comes up again and again and again and again* in
Scheme programming. How do you ever get a handle on this self-referential idea? The
secret is that there has to be some simple kind of expression that have smaller
expressions inside it—the atomic expressions.

It’s easy to understand an expression that just contains one number. Numbers are
that is, when you evaluate a number, you just get the same number back.

Once you understand you can understand numbers.
And once you understand expressions, you can use that knowledge to figure out

expressions-that-add-up-numbers. Then . . . and so on. In practice,
you don’t usually think about all these levels of complexity separately. You just think, “I
know what a number is, and I know what it means to add up expressions.”

So, for example, to understand the expression

you must first understand and as self-evaluating numbers, then understand
as an expression that adds those numbers, then understand how the sum, 5, contributes
to the overall expression.

By the way, in ordinary arithmetic you’ve gotten used to the idea that parentheses
can be optional; 3 + 4 5 means the same as 3 + (4 5). But in Scheme, parentheses are

optional. Every procedure call must be enclosed in parentheses.

You may not have realized it, but inside your computer there are thousands of little
people. Each of them is a specialist in one particular Scheme procedure. The head little
person, Alonzo, is in charge of the read-eval-print loop.

When you enter an expression, such as

•

•

•

•

•

•

•

7

- +
minus

(+ 5 8) (+ 2 4)

(+ 5 8)
5 8

5 8 13

(+ 2 4) 2 4
6

7

order of evaluation

parallel
processing is

Chapter 3 Expressions 31

Alonzo reads it, hires other little people to help him evaluate it, and finally prints , its
value. We’re going to focus on the evaluation step.

Three little people work together to evaluate the expression: a minus person and
two plus people. (To make this account easier to read, we’re using the ordinary English
words “minus” and “plus” to refer to the procedures whose Scheme names are and .
Don’t be confused by this and try to type to Scheme.)

Since the overall expression is a subtraction, Alonzo hires Alice, the first available
minus specialist. Here’s how the little people evaluate the expression:

Alice wants to be given some numbers, so before she can do any work, she complains
to Alonzo that she wants to know which numbers to subtract.

Alonzo looks at the subexpressions that should provide Alice’s arguments, namely,
and . Since both of these are addition problems, Alonzo hires two

plus specialists, Bernie and Cordelia, and tells them to report their results to Alice.

The first plus person, Bernie, also wants some numbers, so he asks Alonzo for them.

Alonzo looks at the subexpressions of that should provide Bernie’s arguments,
namely, and . Since these are both atomic, Alonzo can give them directly to Bernie.

Bernie adds his arguments, and , to get . He does this in his head—we don’t
have to worry about how he knows how to add; that’s his job.

The second plus person, Cordelia, wants some arguments; Alonzo looks at the
subexpressions of and gives the and to Cordelia. She adds them, getting

.

Bernie and Cordelia hand their results to the waiting Alice, who can now subtract them
to get . She hands that result to Alonzo, who prints it.

How does Alonzo know what’s the argument to what? That’s what the grouping of
subexpressions with parentheses is about. Since the plus expressions are inside the minus
expression, the plus people have to give their results to the minus person.

We’ve made it seem as if Bernie does his work before Cordelia does hers. In fact, the
of the argument subexpressions is not specified in Scheme; different

implementations may do it in different orders. In particular, Cordelia might do her work
before Bernie, or they might even do their work at the same time, if we’re using a

computer. However, it important that both Bernie and Cordelia finish their
work before Alice can do hers.

-

*

(+ 5 8)

32 Part II Composition of Functions

* We’ll explain this part in more detail later.

> (* (- (+ 5 8) (+ 2 4))
(/ 10 2))

35

> (+ (* 2 (/ 14 7) 3)
(/ (* (- (* 3 5) 3) (+ 1 1))

(- (* 4 3) (* 3 2)))
(- 15 18))

13

(+ ()
(; One of them takes two lines but you can tell by

) ; matching parentheses that they’re one expression.
())

The entire call to is itself a single expression; it could be a part of an even larger
expression:

This says to multiply the numbers 7 and 5, except that instead of saying 7 and 5
explicitly, we wrote expressions whose values are 7 and 5. (By the way, we would
say that the above expression has three subexpressions, the and the two arguments.
The argument subexpressions, in turn, have their own subexpressions. However, these
sub-subexpressions, such as , don’t count as subexpressions of the whole thing.)

We can express this organization of little people more formally. If an expression
is atomic, Scheme just knows the value.* Otherwise, it is a compound expression,
so Scheme first evaluates all the subexpressions (in some unspecified order) and then
applies the value of the first one, which had better be a procedure, to the values of the
rest of them. Those other subexpressions are the arguments.

We can use this rule to evaluate arbitrarily complex expressions, and Scheme
won’t get confused. No matter how long the expression is, it’s made up of smaller
subexpressions to which the same rule applies. Look at this long, messy example:

Scheme understands this by looking for the subexpressions of the overall expression,
like this:

. . .

. . .
. . .

. . .

(Scheme ignores everything to the right of a semicolon, so semicolons can be used to
indicate comments, as above.)

+ functions

+ *
word sentence

Result Replacement

Plumbing Diagrams

three

rewrite

several

Chapter 3 Expressions 33

(+ (* (- 10 7) (+ 4 1)) (- 15 (/ 12 3)) 17)
(+ (* 3 (+ 4 1)) (- 15 (/ 12 3)) 17)
(+ (* 3 5) (- 15 (/ 12 3)) 17)
(+ 15 (- 15 (/ 12 3)) 17)
(+ 15 (- 15 4) 17)
(+ 15 11 17)
43

(+ (* (- 10 7) (+ 4 1)) (- 15 (/ 12 3)) 17)
(+ (* 3 5) (- 15 4) 17)
(+ 15 11 17)
43

Notice that in the example above we asked to add numbers. In the
program of Chapter 2 we pretended that every Scheme function accepts a fixed number
of arguments, but actually, some functions can accept any number. These include , ,

, and .

Since a little person can’t do his or her job until all of the necessary subexpressions have
been evaluated by other little people, we can “fast forward” this process by skipping the
parts about “Alice waits for Bernie and Cordelia” and starting with the completion of the
smaller tasks by the lesser little people.

To keep track of which result goes into which larger computation, you can write
down a complicated expression and then it repeatedly, each time replacing some
small expression with a simpler expression that has the same value.

In each line of the diagram, the boxed expression is the one that will be replaced with its
value on the following line.

If you like, you can save some steps by evaluating small expressions from one
line to the next:

Some people find it helpful to look at a pictorial form of the connections among
subexpressions. You can think of each procedure as a machine, like the ones they drew
on the chalkboard in junior high school.

-

++

5 8 2 4

-

++

5 8 2 4

13 6

7

(- (+ 5 8) (+ 2 4))

34 Part II Composition of Functions

Each machine has some number of input hoppers on the top and one chute at the
bottom. You put something in each hopper, turn the crank, and something else comes
out the bottom. For a complicated expression, you hook up the output chute of one
machine to the input hopper of another. These combinations are called “plumbing
diagrams.” Let’s look at the plumbing diagram for :

You can annotate the diagram by indicating the actual information that flows through
each pipe. Here’s how that would look for this expression:

⇒

⇒

⇒

Pitfalls

doesn’t

Chapter 3 Expressions 35

square (cos 3)

+

* 3
(sqrt 49) (/ 12 4)
+

(square (cos 3))

(+ (* 2 (/ 14 7) 3) (/ (* (- (* 3 5) 3) (+ 1
1)) (- (* 4 3) (* 3 2))) (- 15 18))

(+ (* 2 (/ 14 7) 3)
(/ (* (- (* 3 5) 3) (+ 1 1))

(- (* 4 3) (* 3 2)))
(- 15 18))

(+ (* 3 (sqrt 49) ;; weirdly formatted
(/ 12 4)))

One of the biggest problems that beginning Lisp programmers have comes from
trying to read a program from left to right, rather than thinking about it in terms of
expressions and subexpressions. For example,

mean “square three, then take the cosine of the answer you get.” Instead, as you
know, it means that the argument to is the return value from .

Another big problem that people have is thinking that Scheme cares about the
spaces, tabs, line breaks, and other “white space” in their Scheme programs. We’ve been
indenting our expressions to illustrate the way that subexpressions line up underneath
each other. But to Scheme,

means the same thing as

So in this expression:

there aren’t two arguments to , even though it looks that way if you think about the
indenting. What Scheme does is look at the parentheses, and if you examine these
carefully, you’ll see that there are three arguments to : the atom , the compound
expression , and the compound expression . (And there’s only one
argument to .)

A consequence of Scheme’s not caring about white space is that when you hit the
return key, Scheme might not do anything. If you’re in the middle of an expression,
Scheme waits until you’re done typing the entire thing before it evaluates what you’ve
typed. This is fine if your program is correct, but if you type this in:

⇒

⇒

× ×3.1

3.2

+

"

return enter

Boring Exercises

nothing

string.

36 Part II Composition of Functions

(+ (* 3 4)
(/ 8 2) ; note missing right paren

(+ (* 3 " 4) ; note extra quote mark
(/ 8 2))

(+ 3 (* 4 5) (- 10 4))

(+ (* (- (/ 8 2) 1) 5) 2)

then will happen. Even if you type forever, until you close the open parenthesis
next to the sign, Scheme will still be reading an expression. So if Scheme seems to be
ignoring you, try typing a zillion close parentheses. (You’ll probably get an error message
about too many parentheses, but after that, Scheme should start paying attention again.)

You might get into the same sort of trouble if you have a double-quote mark () in
your program. Everything inside a pair of quotation marks is treated as one single
We’ll explain more about strings later. For now, if your program has a stray quotation
mark, like this:

then you can get into the same predicament of typing and having Scheme ignore you.
(Once you type the second quotation mark, you may still need some close parentheses,
since the ones you type inside a string don’t count.)

One other way that Scheme might seem to be ignoring you comes from the fact that
you don’t get a new Scheme prompt until you type in an expression and it’s evaluated.
So if you just hit the or key without typing anything, most versions of
Scheme won’t print a new prompt.

Translate the arithmetic expressions (3+4) 5 and 3+(4 5) into Scheme expressions,
and into plumbing diagrams.

How many little people does Alonzo hire in evaluating each of the following
expressions:

3.3

3.4

3.5

3.6

3.7

(+ 3 4)

(/ 1 3)
0.33333

1/3

Chapter 3 Expressions 37

(* (+ (- 3 (/ 4 2))
(sin (* 3 2))
(- 8 (sqrt 5)))

(- (/ 2 3)
4))

(* (- 1 (+ 3 4)) 8)

(+ (* 3 (- 4 7))
(- 8 (- 3 5)))

(sqrt (+ 6 (* 5 2)))

(+ (+ (+ 1 2) 3) 4)

(+ 3 4 5 6 7)

(+ (+ 3 4) (+ 5 6 7))

(+ (+ 3 (+ 4 5) 6) 7)

Each of the expressions in the previous exercise is compound. How many subex-
pressions (not including subexpressions of subexpressions) does each one have?

For example,

has three subexpressions; you wouldn’t count .

Five little people are hired in evaluating the following expression:

Give each little person a name and list her specialty, the argument values she receives,
her return value, and the name of the little person to whom she tells her result.

Evaluate each of the following expressions using the result replacement technique:

Draw a plumbing diagram for each of the following expressions:

What value is returned by in your version of Scheme? (Some Schemes
return a decimal fraction like , while others have exact fractional values like

built in.)

•

•

•

•

•

3.8

3.9 (+ 8 2) 10

Real Exercises

38 Part II Composition of Functions

Which of the functions that you explored in Chapter 2 will accept variable numbers
of arguments?

The expression has the value . It is a compound expression made up of
three atoms. For this problem, write five other Scheme expressions whose values are also
the number ten:

An atom

Another compound expression made up of three atoms

A compound expression made up of four atoms

A compound expression made up of an atom and two compound subexpressions

Any other kind of expression

