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Foreword

Structure
and Interpretation of Computer Programs. SICP,
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xv

* Since Hal wrote this Foreword, they’ve switched the AP exam to use C++, but the principle is
the same.

One of the best ways to stifle the growth of an idea is to enshrine it in an educational
curriculum. The textbook publishers, certification panels, professional organizations,
the folks who write the college entrance exams—once they’ve settled on an approach,
they become frozen in a straitjacket of interlocking constraints that thwarts the ability to
evolve. So it is common that students learn the “modern” geography of countries that
no longer exist and practice using logarithm tables when calculators have made tables
obsolete. And in computer science, beginning courses are trapped in an approach that
was already ten years out of date by the time it was canonized in the mid-1980s, when the
College Entrance Examination Board adopted an advanced placement exam based on
Pascal.*

This book points the way out of the trap. It emphasizes programming as a way to
express ideas, rather than just a way to get computers to perform tasks.

Julie and Gerry Sussman and I are flattered that Harvey and Wright characterize
their revolutionary introduction to computer science as a “prequel” to our text

When we were writing we often drew upon
the words of the great American computer scientist Alan Perlis (1922–1990). Perlis was
one of the designers of the Algol programming language, which, beginning in 1958,
established the tradition of formalism and precision that Pascal embodies. Here’s what
Perlis had to say about this tradition in 1975, nine years the start of the AP exam:

Algol is a blight. You can’t have fun with Algol. Algol is a code that now
belongs in a plumber’s union. It helps you design correct structures that



symbolic programming.

higher-order functions.
write programs that write programs,

xvi Foreword

don’t collapse, but it doesn’t have any fun in it. There are no pleasures in
writing Algol programs. It’s a labor of necessity, a preoccupation with the
details of tedium.

Harvey and Wright’s introduction to computing emerges from a different intellectual
heritage, one rooted in research in artificial intelligence and the programming language
Lisp. In approaching computing through this book, you’ll focus on two essential
techniques.

First is the notion of This means that you deal not only with
numbers and letters, but with structured collections of data—a word is a list of characters,
a sentence is a list of words, a paragraph is a list of sentences, a story is a list of paragraphs,
and so on. You assemble things in terms of natural parts, rather than always viewing data
in terms of its tiniest pieces. It’s the difference between saying “find the fifth character
of the third word in the sentence” and “scan the sentence until you pass two spaces, then
scan past four more characters, and return the next character.”

The second technique is to work with That means that you
don’t only write programs, but rather you so you can
bootstrap your methods into more powerful methods.

These two techniques belong at center stage in any beginning programming course,
which is exactly where Harvey and Wright put them. The underlying principle in both
cases is that you work with general parts that you extend and combine in flexible ways,
rather than tiny fragments that you fit together into rigid structures.

You should come to this introduction to computing ready to think about ideas rather
than details of syntax, ready to design your own languages rather than to memorize
the rules of languages other people have designed. This kind of activity changes your
outlook not only on programming, but on any area where design plays an important role,
because you learn to appreciate the relations among parts rather than always fixating on
the individual pieces. To quote Alan Perlis again,

You begin to think in terms of patterns and idioms and phrases, and no
longer pick up a trowel and some cement and lay things down brick by
brick. The Great Wall, standing for centuries, is a monument. But building
it must have been a bore.

Hal Abelson
Cambridge, MA
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There are two schools of thought about teaching computer science. We might caricature
the two views this way:

Computer programs have become too large and complex to
encompass in a human mind. Therefore, the job of computer science education
is to teach people how to discipline their work in such a way that 500 mediocre
programmers can join together and produce a program that correctly meets its
specification.

Computer programs have become too large and complex to
encompass in a human mind. Therefore, the job of computer science education is to
teach people how to expand their minds so that the programs fit, by learning to
think in a vocabulary of larger, more powerful, more flexible ideas than the obvious
ones. Each unit of programming thought must have a big payoff in the capabilities
of the program.

Of course nobody would admit to endorsing the first approach as we’ve described it.
Yet many introductory programming courses seem to spend half their time on obscure
rules of the programming language (semicolons go the instructions in Pascal, but

each instruction in C) and the other half on stylistic commandments (thou shalt
comment each procedure with its preconditions and postconditions; thou shalt not use

). In an article that was intended as a caricature, the noted computer scientist
Edsger Dijkstra argues that beginning computer science students

lest they learn to debug their programs interactively instead of writing
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One Big Idea: Symbolic Programming
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xviii Preface

* “On the Cruelty of Really Teaching Computer Science,” vol. 32,
no. 12, December, 1989.

programs that can be proven correct by formal methods before testing.*

If you are about to be a student in an introductory computer science course, you may
already be an experienced programmer of your home computer, or instead you may have
only a vague idea of what you’re getting into. Perhaps you suspect that programming
a computer is like programming a VCR: entering endless obscure numeric codes. Even
if you’re already a computer programmer, you may not yet have a clear idea of what
computer means. In either case, what we want to do in this book is put our best
foot forward—introduce you to some new ideas, get you excited, rather than mold you
into a disciplined soldier of the programming army.

In order to understand the big ideas, though, we’ll also have to expend some effort
on technical details; studying computer science without writing computer programs is
like trying to study German grammar without learning any of the words in the language.
But we’ll try to keep the ideas in view while struggling with the details, and we hope you’ll
remember them too.

We said that our approach to teaching computer science emphasizes big ideas. Our
explanation of symbolic programming in the following paragraphs is in part just an
illustration of that approach. But we chose this particular example for another reason
also. Scheme, the programming language used in this book, is an unusual choice
for an introductory computer science course. You may wonder why we didn’t use a
more traditional language, such as Pascal, Modula-2, or C. Our discussion of symbolic
programming is the beginning of an answer to that question.

Originally computers were about numbers. Scientists used them to solve equations;
businesses used them to compute the payroll and the inventory. We were rescued from
this boring state of affairs mainly by researchers in people who
wanted to get computers to think more nearly the way people do, about ideas in general
rather than just numbers.

What does it mean to represent in a computer? Here’s a simple example:
We want to teach the computer to answer the question, “Was so-and-so a Beatle?” We
can’t quite ask the question in English; in this book we interact with the computer using
Scheme. Our interactions will look like this:



Lisp and Radical Computer Science

(beatle? ’paul)
#t

(beatle? ’elvis)
#f

sentence words.

abstraction,

the computer the programmer

Preface xix

* The left parenthesis is 40, for example, and the letter is 100. If it were a capital it would be
68.

(define (beatle? person)
(member? person ’(john paul george ringo)))

(john paul george ringo)

d D

You type:
Computer replies: (computerese for “true”)

You type:
Computer replies: (“false”)

Here’s the program that does the job:

If you examine this program with a (metaphoric) magnifying glass, you’ll find that it’s
really still full of numbers. In fact, each letter or punctuation character is represented in
the computer by its own unique number.* But the point of the example is that you don’t
have to know that! When you see

you don’t have to worry about the numbers that represent the letters inside the computer;
all you have to know is that you’re seeing a made up of four Our
programming language hides the underlying mechanism and lets us think in terms
more appropriate to the problem we’re trying to solve. That hiding of details is called

one of the big ideas in this book.

Programming with words and sentences is an example of symbolic programming.
In 1960 John McCarthy invented the Lisp programming language to handle symbolic
computations like this one. Our programming language, Scheme, is a modern dialect of
Lisp.

Symbolic programming is one aspect of the reason why we like to teach computer science
using Scheme instead of a more traditional language. More generally, Lisp (and therefore
Scheme) was designed to support what we’ve called the radical view of computer science.
In this view, computer science is about tools for expressing ideas. Symbolic programming
allows to express ideas; other aspects of Lisp’s design help
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xx Preface

* Their own names for their approach are andstructured programming software engineering.

(define (square num)
(* num num))

> (square 4)
16
> (square 3.14)
9.8596
> (square -0.3)
0.09

function SquareOfWholeNumber(num: integer): integer;
begin
SquareOfWholeNumber := num * num

end;

function SquareOfDecimalNumber(num: real): real;
begin
SquareOfDecimalNumber := num * num

end;

express ideas conveniently. Sometimes that goal comes in conflict with the conservative
computer scientist’s goal of protection against errors.

Here’s an example. We want to tell our computer, “To square a number, multiply it
by itself.” In Scheme we can say

The asterisk represents multiplication, and is followed by the two operands—in this case,
both the same number. This short program works for any number, of course, as we can
see in the following dialogue. (The lines with in front are the ones you type.)

But the proponents of the 500-mediocre-programmer school* think this straightforward
approach is sinful. “What!” they cry. “You haven’t said whether is a whole number
or a number with a decimal fraction!” They’re afraid that you might write the
program with whole numbers in mind, and then apply it to a decimal fraction If
you’re on a team with 499 other programmers, it’s easy to have failures of communication
so that one programmer uses another’s program in unintended ways.

To avoid that danger, they want you to write these two separate programs:
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SICP,

Preface xxi

* Of course, teacher isn’t an uptight authoritarian, or you wouldn’t be using our book!

** Okay, we’re exaggerating. But even Professor Wirth himself has found Pascal so restrictive
that he had to design more flexible languages—although not flexible enough—called Modula and
Oberon.

*** As the ideas pioneered by have spread, we are starting to see other intellectually
respectable introductions to computer science that are meant as alternatives to In particular,
we should acknowledge (George Springer and Daniel P. Friedman,
MIT Press/McGraw-Hill, 1989) as a recognized classic. We believe our book will serve as preparation
for theirs, too.

Isn’t this silly? Why do they pick this particular distinction (whole numbers and decimals)
to worry about? Why not positive and negative numbers, for example? Why not odd and
even numbers?

That two-separate-program example is written in the Pascal language. Pascal was
designed by Niklaus Wirth, one of the leaders of the structured programming school,
specifically to programming students to write programs that fit conservative ideas
about programming style and technique; you can’t write a program in Pascal at all
unless you write it in the approved style. Naturally, this language has been very popular
with school teachers.* That’s why, as we write this in 1993, the overwhelming majority
of introductory computer science classes are taught using Pascal, even though no
professional programmer would be caught dead using it.**

For fourteen years after the introduction of Pascal in 1970, its hegemony in computer
science education was essentially unchallenged. But in 1984, two professors at the
Massachusetts Institute of Technology and a programmer at Bolt, Beranek and Newman
(a commercial research lab) published the Scheme-based

(Harold Abelson and Gerald Jay Sussman with Julie Sussman,
MIT Press/McGraw-Hill). That ground-breaking text brought the artificial intelligence
approach to a wide audience for the first time. We (Brian and Matt) have been teaching
their course together for several years. Each time, we learn something new.

The only trouble with is that it was written for MIT students, all of whom love
science and are quite comfortable with formal mathematics. Also, most of the students
who use at MIT have already learned to program computers before they begin. As a
result, many other schools have found the book too challenging for a beginning course.
We believe that everyone who is seriously interested in computer science must read
eventually. Our book is a it’s meant to teach you what you need to know in order
to read that book successfully.*** Generally speaking, our primary goal in Parts I–V has
been preparation for while the focus of Part VI is to connect the course with the
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Who Should Read This Book

kinds of programming used in “real world” application programs like spreadsheets and
databases. (These are the last example and the last project in the book.)

This book is intended as an introduction to computer programming and to computer
science for two kinds of students.

For those whose main interest is in some other field, we provide a self-contained,
one-semester experience with computer programming in a language with a minimum of
complicated notation, so that students can quickly come in contact with high-level ideas
about algorithms, functions, and recursion. The book ends with the implementation of a
spreadsheet program and a database program, so it complements a computer application
course in which the commercial versions of such programs are used.

For those who intend to continue the study of computer science but who have
no prior programming experience, we offer a preparatory course, less intense than
a traditional CS 1 but not limited to programming technique; we give the flavor of
computer science ideas that will be studied in more depth later in the curriculum. We
also include an extensive discussion of recursion, which is a stumbling block for many
beginning students.

The course at Berkeley for which we wrote this book includes both categories of
students. About 90% of the first-year students who intend to major in computer science
have already had a programming course in high school, and most of them begin with
The other 10% are advised to take this course first. But many of the students in this course
aren’t computer science majors. A few other departments (business administration and
architecture are the main ones) have a specific computer course requirement, and all
students must meet a broader “quantitative reasoning” requirement; our course satisfies
these requirements. Finally, some students come just out of curiosity about computers.

We assume that you have never programmed a computer. On the other hand, we
do assume that you can a computer; we don’t talk about how to turn it on, how to
edit text, and so on, because those details are too different from one computer model to
another. If you’ve never used a computer before, you may wish to spend a few days with
a book written specifically for your machine that will introduce you to its operation. It
won’t take more than a few days, because you don’t have to be an expert before you read
our book. As long as you can start up the Scheme interpreter and correct your typing
mistakes, you’re ready.
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Preface xxiii

We assume that you’re not a mathematics lover. (If you are, you might be ready to
read right away.) The earlier example about squaring a number is about as advanced
as we get. And of course you don’t have to do any arithmetic at all; computers are good
at that. You’ll learn how to the computer to do arithmetic, but that’s no harder than
using a pocket calculator. Most of our programming examples are concerned with words
and sentences rather than with numbers. A typical example is to get Scheme to figure
out the plural form of a noun. Usually that means putting an “s” on the end, but not
quite always. (What’s the plural of “French fry”?)

Do the exercises! Whenever we teach programming, we always get students who say,
“When I read the book it all makes sense, but on the exams, when you ask me to write a
program, I never know where to start.” Computer science is two things: a bunch of big
ideas, as we’ve been saying, and also a skill. You can’t learn the skill by watching.

Do the exercises on a computer! It’s not good enough to solve the exercises on
paper, even if you feel sure your solution is correct. Maybe it’s 99% correct but there’s
some little detail you’ve overlooked. When you run such a program, you won’t get 99%
of the answer you wanted. By trying the exercise on the computer, you get unambiguous
feedback. If your program is correct, you get the response you expected. If not, not.

Don’t feel bad if you don’t get things right the first time. Even the most experienced
programmers have to their programs—that is, fix the parts that don’t work. In
fact, an important part of what you’ll learn from the exercises is the of debugging
your solutions. It would be too bad if all of your programs in this course worked the
first time, because that would let you avoid the practice in debugging that you’ll certainly
need when you write more complicated programs later. Also, don’t be afraid or ashamed
to ask for help if you get stuck. That, too, is part of the working style of professional
programmers.

In some of the chapters, we’ve divided the exercises into two categories, “boring”
and “real.” The boring exercises ask you to work through examples mechanically, to
make sure you understand the rules. The real exercises ask you to something,
usually a small computer program, but sometimes an explanation of some situation that
we present. (In some chapters, the exercises are just labeled “exercises,” which means
that they’re all considered “real.”) We don’t intend that the boring exercises be handed
in; the idea is for you to do as many of them as you need to make sure you understand
the mechanics of whatever topic you’re learning.



xxiv Preface

(define (something foo baz) ;; first version
)

Occasionally we introduce some idea with a simplified explanation, saving the whole
truth for later. We warn you when we do this. Also, we sometimes write preliminary,
partial, or incorrect example programs, and we always flag these with a comment like

. . .

When we introduce technical terms, we sometimes mention the origin of the word, if it’s
not obvious, to help prevent the terminology from seeming arbitrary.

This book starts easy but gets harder, in two different ways. One is that we spend
some time teaching you the basics of Scheme before we get to two hard big ideas, namely,
function as object and recursion. The earlier chapters are short and simple. You may get
the idea that the whole book will be trivial. You’ll change your mind in Parts III and IV.

The other kind of difficulty in the book is that it includes long programming
examples and projects. (“Examples” are programs we write and describe; “projects” are
programs we ask you to write.) Writing a long program is quite different from writing
a short one. Each small piece may be easy, but fitting them together and remembering
all of them at once is a challenge. The examples and projects get longer as the book
progresses, but even the first example, tic-tac-toe, is much longer and more complex than
anything that comes before it.

As the text explains more fully later, in this book we use some extensions to
the standard Scheme language—features that we implemented ourselves, as Scheme
programs. If you are using this book in a course, your instructor will provide our
programs for you, and you don’t have to worry about it. But if you’re reading the book
on your own, you’ll need to follow the instructions in Appendix A.

There are several reference documents at the end of the book. If you don’t
understand a technical term in the text, try the Glossary for a short definition, or the
General Index to find the more complete explanation in the text. If you’ve forgotten
how to use a particular Scheme primitive procedure, look in the Alphabetical Table of
Scheme Primitives, or in the General Index. If you’ve forgotten the name of the relevant
primitive, refer to the inside back cover, where all the primitive procedures are listed
by category. Some of our example programs make reference to procedures that were
defined earlier, either in another example or in an exercise. If you’re reading an example
program and it refers to some procedure that’s defined elsewhere, you can find that
other procedure in the Index of Defined Procedures.
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Lists and Sentences

The language that we use in this book isn’t exactly standard Scheme. We’ve provided
several extensions that may seem unusual to an experienced Scheme programmer. This
may make the book feel weird at first, but there’s a pedagogic reason for each extension.

Along with our slightly strange version of Scheme, our book has a slightly unusual
order of topics. Several ideas that are introduced very early in the typical Scheme-based
text are delayed in ours, most notably recursion. Quite a few people have looked at our
table of contents, noted some particular big idea of computer science, and remarked, “I
can’t believe you wait so long before getting to !”

In this preface for instructors, we describe and explain the unusual elements of
our approach. Other teaching issues, including the timing and ordering of topics, are
discussed in the Instructor’s Manual.

The chapter named “Lists” in this book is Chapter 17, about halfway through the book.
But really we use lists much earlier than that, almost from the beginning.

Teachers of Lisp have always had trouble deciding when and how to introduce
lists. The advantage of an early introduction is that students can then write interesting
symbolic programs instead of boring numeric ones. The disadvantage is that students
must struggle with the complexity of the implementation, such as the asymmetry between
the two ends of a list, while still also struggling with the idea of composition of functions
and Lisp’s prefix notation.

We prefer to have it both ways. We want to spare beginning students the risk of
accidentally constructing ill-formed lists such as
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sentence

structured

word
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((((() . D) . C) . B) . A)

read-char read-line read-string

sentence

car cdr

plural
pig-latin

(like this) ("like" "this")

* Speaking of abstraction, even though that’s the name of Part V, we do make an occasion in
each of the earlier parts to talk about abstraction as examples come up.

** Even then, we take lists as a primitive data type. We don’t teach about pairs or improper lists,
except as a potential pitfall.

*** Scheme’s primitive I/O facility gives you the choice of expressions or characters. Instead of
using , we invent , which reads a line as a sentence, and ,
which returns the line as one long word.

but we also want to write natural-language programs from the beginning of the book.
Our solution is to borrow from Logo the idea of a abstract data type.* Sentences
are guaranteed to be flat, proper lists, and they appear to be symmetrical to the user of
the abstraction. (That is, it’s as easy to ask for the last word of a sentence as to ask for
the first word.) The constructor accepts either a word or a sentence in any
argument position.

We defer lists until we have higher-order functions and recursion, the
tools we need to be able to use the structure effectively.** A structured list can be
understood as a tree, and Lisp programmers generally use that understanding implicitly.
After introducing - recursion, we present an explicit abstract data type for trees,
without reference to its implementation. Then we make the connection between these
formal trees and the name “tree recursion” used for structured lists generally. But
Chapter 18 can be omitted, if the instructor finds the tree ADT unnecessary, and the
reader of Chapter 17 will still be able to use structured lists.

We haven’t said what a is. Scheme includes separate data types for characters,
symbols, strings, and numbers. We want to be able to dissect words into letters, just as
we can dissect sentences into words, so that we can write programs like and

. Orthodox Scheme style would use strings for such purposes, but we want
a sentence to look and not . We’ve arranged that in
most contexts symbols, strings, and numbers can be used interchangeably; our readers
never see Scheme characters at all.*** Although a word made of letters is represented
internally as a symbol, while a word made of digits is represented as a number, above
the abstraction line they’re both words. (A word that standard Scheme won’t accept as a
symbol nor as a number is represented as a string.)
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Overloading in the Text Abstraction

first last butfirst butlast

first

car
substring

word-first sentence-first

word-first sentence-first fixnum-+
bignum-+ +

first

explode

There is an efficiency cost to treating both words and sentences as abstract aggregates,
since it’s slow to disassemble a sentence from right to left and slow to disassemble a word in
either direction. Many simple procedures that seem linear actually behave quadratically.
Luckily, words aren’t usually very long, and the applications we undertake in the early
chapters don’t use large amounts of data in any form. We write our large projects as
efficiently as we can without making the programs unreadable, but we generally don’t
make a fuss about it. Near the end of the book we discuss explicitly the efficient use of
data structures.

Even though computers represent numbers internally in many different ways (fixed
point, bignum, floating point, exact rational, complex), when people visit mathland, they
expect to meet numbers there, and they expect that all the numbers will understand how
to add, subtract, multiply, and divide with each other. (The exception is dividing by zero,
but that’s because of the inherent rules of mathematics, not because of the separation of
numbers into categories by representation format.)

We feel the same way about visiting textland. We expect to meet English text there.
It takes the form of words and sentences. The operations that text understands include

, , , and to divide the text into its component parts. You
can’t divide an empty word or sentence into parts, but it’s just as natural to divide a word
into letters as to divide a sentence into words. (The ideas of mathland and textland, as
well as the details of the word and sentence procedures, come from Logo.)

Some people who are accustomed to Scheme’s view of data types consider
to be badly “overloaded”; they feel that a procedure that selects an element from a list
shouldn’t also extract a letter from a symbol. Some of them would prefer that we use
for lists, use for strings, and not disassemble symbols at all. Others want us
to define and .

To us, and sound no less awkward than
and . Everyone agrees that it’s reasonable to overload the name because
the purposes are so similar. Our students find it just as reasonable that works for
words as well as for sentences; they don’t get confused by this.

As for the inviolability of symbols—the wall between names and data—we are
following an older Lisp tradition, in which it was commonplace to symbols and
to construct new names within a program. Practically speaking, all that prevents us from
representing words as strings is that Scheme requires quotation marks around them. But
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lambda
lambda

set!

vector-set!

Higher-Order Procedures, Lambda, and Recursion

Mutators and Environments

in any case, the abstraction we’re presenting is that the data we’re dissecting are neither
strings nor symbols, but words.

Scheme relies on procedure invocation as virtually its only control mechanism. In order
to write interesting programs, a Scheme user must understand at least one of two hard
ideas: recursion or procedure as object (in order to use higher-order procedures). We
believe that higher-order procedures are easier to learn, especially because we begin in
Chapter 8 by applying them only to named procedures. Using a named procedure as
an argument to another procedure is the way to use procedures as objects that’s least
upsetting to a beginner. After the reader is comfortable with higher-order procedures,
we introduce ; after that we introduce recursion. We do the tic-tac-toe example
with higher-order procedures and , but not recursion.

In this edition, however, we have made the necessary minor revisions so that an
instructor who prefers to begin with recursion can assign Part IV before Part III.

When we get to recursion, we begin with an example of embedded recursion. Many
books begin with the simplest possible recursive procedure, which turns out to be a
simple sequential recursion, or even a tail recursion. We feel that starting with such
examples allows students to invent the “go back” model of recursion as looping.

One of the most unusual characteristics of this book is that there is no assignment to
variables in it. The reason we avoid is that the environment model of evaluation is
very hard for most students. We use a pure substitution model throughout most of the
book. (With the background they get from this book, students should be ready for the
environment model when they see a rigorous presentation, as they will, for example, in
Chapter 3 of )

As the last topic in the book, we do introduce a form of mutation, namely
. Mutation of vectors is less problematic than mutation of lists, be-

cause lists naturally share storage. You really have to go out of your way to get two
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* We don’t talk about at all. We’re careful to write our programs in such a way that the issue
of identity doesn’t arise for the reader.

pointers to the same vector.* Mutation of data structures is less problematic than assign-
ment to variables because it separates the issue of mutation from the issues of binding
and scope. Using vectors raises no new questions about the evaluation process, so we
present mutation without reference to any formal model of evaluation. We acknowledge
that we’re on thin ice here, but it seems to work for our students.

In effect, our model of mutation is the “shoebox” model that you’d find in a
mainstream programming language text. Before we get to mutation, we use input/output
programming to introduce the ideas of effect and sequence; assigning a value to a vector
element introduces the important idea of state. We use the sequential model to write
two more or less practical programs, a spreadsheet and a database system. A more
traditional approach to assignment in Scheme would be to build an object-oriented
language extension, but the use of local state variables would definitely force us to pay
attention to environments.
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